Dental Materials I

Unit V

Aqueous Elastomeric Dental Impression Materials
Aqueous Elastomeric Dental Impression Materials

Uses: Comes in various forms.

Each material has its own particular technique for use and purpose.

Dental impression materials are **exact/precise** - manufacturers directions must be followed completely. Unlike plaster and stone.

- Alginate is not accurate enough to use for a final impression for crown and bridge, but would it make sense to use hydrocolloid for the primary impression to make a study model. These materials set either by a chemical or cooling action.

- Elastomeric impression stretch elastically when removed over the tooth and then spring back to their original shape.

Aqueous Elastomeric Hydrocolloids

- A more common name for the water based impression materials.
- Colloid are suspensions of molecules in some type of dispersing medium such as, water, hence the term hydrocolloid.
- The molecules each possess a similar electrical charge and therefore repel each other.

Irreversible Hydrocolloids - Alginate

- The transformation from sol to gel (gelatin) of irreversible hydrocolloid (alginate) occurs by a chemical reaction. Once the gel has formed it cannot go back to sol.

- Alginate has various brand names, some in gel form and in a soft mass. There are a variety of colors, flavors, dust free and antimicrobial options.
Aqueous Elastomeric Dental Impression Materials

- Impression Categories/Types:
 - Aqueous elastomeric is water based
 - Non-aqueous elastomeric is a synthetic rubber based material
Aqueous Elastomeric Dental Impression Materials

Impression Techniques: used with impression materials

- **Indirect technique** - impression taken outside the mouth-on a model
- **Direct technique** - impression taken in the mouth
Aqueous Elastomeric Dental Impression Materials

- Characteristics:
 - Materials are non-elastic or elastomeric.
 - Alginate not accurate for final impression
 - Hydrocolloid for primary impression, too expensive/involved
 - These materials set by chemical or cooling action.
 - Elastomeric impression stretch when removed
 - Then spring back to original shape.
Aqueous Elastomeric Dental Impression Materials

- Acqueous Elastromeric Hydrocolloids

1. A common name for water based impression materials.
2. Colloid are suspensions of molecules in some type of dispersing medium such as, water, hence the term hydrocolloid
3. The molecules each possess similar electrical charge and repel each other.
Aqueous Elastomeric Materials

Irreversible Hydrocolloid

- Alginate - various brand names
- variety of colors/flavors
- dust free
- antimicrobial
Aqueous Elastomeric Materials

Irreversible Hydrocolloid

■ Uses

■ Impressions:
 - for appliances
 - study/orthodontic models
 - partial/denture repairs
 - preliminary edentulous impressions
Aqueous Elastomeric Materials

Irreversible Hydrocolloid

- Physical Characteristics
 - Gels by a chemical reaction
 - Not accurate as reversible colloid
 - More porous
Aqueous Elastomeric Materials

Irreversible Hydrocolloid

- **Types**
- **Normal Set** - Type II
 - gel 2 - 4.5 min
- **Fast Set** - Type I
 - gel 1 - 2 min
- **Extra Fast Set**
 - gel less than 1 min
- **Chromochon** - Type I or II
 - color change indicates mixing/setting
Aqueous Elastomeric Materials

Irreversible Hydrocolloid

- **Composition**
 - 15% Potassium Alginate - (sea kelp) a thickening agent
 - 16% Calcium Sulfate - reacts w/potassium to create a gel
 - 2% Trisodium Phosphate - a retarder determines working/setting
 - 4% Zinc Oxide - a filler
 - 3% Potassium Titanium Fluoride - added as an accelerator so the gypsum will set
 - 60% Diatomaceous Earth - a filler to increase strength/stiffness this silica has been identified as an occupational hazard
Aqueous Elastomeric Materials

Irreversible Hydrocolloid

- Packaging and Storing
 - Cans, tubs, pouches, bulk, premixed
 - Fluff cans before dispensing - let it settle!
 - Do not breathe dust
 - Shelf life no longer than 1 year
 - Deteriorates quickly with temp/moisture
Aqueous Elastomeric Materials

Irreversible Hydrocolloid

- Working and Setting Time

- Gelation time
- measured from the beginning of the mix
- until gelation occurs
- must be enough time to:
 - mix, load tray, pass, place in mouth
Aqueous Elastomeric Materials

Irreversible Hydrocolloid

- Working and Setting Time
 - Water temperature - only method of controlling set
 - cold prolongs set
 - warm accelerates set
Aqueous Elastomeric Materials

Irreversible Hydrocolloid

- **Mixing**
 - water/powder ratio is crucial
 - deviations weaken mix
 - insufficient spatulation can reduce gel strength by 50%
 - excessive spatulation breaks up gelatin stage, weakens final product
Aqueous Elastomeric Materials

Irreversible Hydrocolloid - Mixing

- **Bowl Technique**
 - water measured, placed in bowl
 - alginate measured & added to water
 - spatulate with swiping, mashing fashion against sides of flexible bowl
 - mix 1 minute - *smooooth* & creamy - not drippy
 - load tray
Aqueous Elastomeric Materials

Irreversible Hydrocolloid - Mixing

- **Baggie Technique**

- place alginate into baggie
- shake into one corner
- add water, express air
- fold, mash, knead, squeeze
- mix 20-30 seconds
- tear one corner, squeeze into tray
Aqueous Elastomeric Materials

Irreversible Hydrocolloid

- **Infection Control**
 - rinse immediately
 - spray with surface disinfection
 - follow manufacturer’s directions
 - rinse, wrap in a wet paper towel
 - place in baggie, label - call for pick up or pour
Aqueous Elastomeric Materials

Irreversible Hydrocolloid

- **Common Difficulties**
 - grainy material - water too warm
 - too much water - sloppy
 - prolonged spatulation - sets up
 - failure to pour immediately - dries out
 - improperly removed - tears & distorts
Aqueous Elastomeric Materials

Irreversible Hydrocolloid

- Common Difficulties

- distortion from delayed pouring
- imbibition
 - swells - takes up moisture from air or towel
- syneresis
 - shrinks - looses water - dry towel
Aqueous Elastomeric Materials

Reversible Hydrocolloid

- **History/Outdated?**
- The first elastomeric impression material introduced to dentistry
- agar agar extracted from kelp is used as the colloid base
Aqueous Elastomeric Materials

Reversible Hydrocolloid

- Use/Indications
 - final impression for lab made restorations
Aqueous Elastomeric Materials

Reversible Hydrocolloid

- **Physical Characteristics**

- **Colloid**
 - large molecules or groups of molecules suspended in a dispersing medium

- **Reversible**
 - go from liquid to gel - then gel to liquid repeatedly
Aqueous Elastomeric Materials

Reversible Hydrocolloid

- Physical Characteristics
- Stability

- prone to syneresis/imbibition
- impression immersed in 2% potassium accelerator
Aqueous Elastomeric Materials

Reversible Hydrocolloid

- Physical Phases

- Sol

 - groups of molecules dispersed within water
 - behave like a fluid of high viscosity
Aqueous Elastomeric Materials

Reversible Hydrocolloid

- **Gel**

- reduce temperature
- groups of molecules join together
- forms a network of chains or fibrils
- fibril network encloses dispersed medium
- water at 102°F forms semi solid = gel
Aqueous Elastomeric Materials

Reversible Hydrocolloid

- **Gel Strength**
- Weak & tears
- remove from mouth with snap
- no tugging

- **Gelatin Temperature**
- temperature when change from sol to gel
Aqueous Elastomeric Materials

Reversible Hydrocolloid

- Reversible

- ability to change from sol to gel to sol

- Known as “Jello theory”
Aqueous Elastomeric Materials

Reversible Hydrocolloid

- Dimensional Stability

- Syneresis
 - loss of water by evaporation creates shrinkage

- Imbibition
 - absorption of water creates swelling

- both cause distortion
Aqueous Elastomeric Materials

Reversible Hydrocolloid

- Preparation and Storage
 - Uses a special machine $$
 - hydrocolloid unit
 - special trays, syringe, tubs
 - three separate tanks
 - temperatures are controlled
Aqueous Elastomeric Materials

Reversible Hydrocolloid

- **Preparation and Storage**
 - 1) Liquefying Section (L)
 - 10 minutes in boiling bath
 - 212°F
 - 2) Storage Section (C)
 - left for hours
 - 150°F - must knead tubes thoroughly
Aqueous Elastomeric Materials

Reversible Hydrocolloid

- **Preparation and Storage**

- **3) Conditioning or Tempering Section (R)**
 - cooling material to 115°F
 - place in impression tray
 - conditioning bath for 10 minutes
Aqueous Elastomeric Materials

- **Process:**
 - Dr injects low-viscosity syringe material into mouth (from storage to mouth)
 - Assistant pats dry water-soaked outer layer of material off of tray
Aqueous Elastomeric Materials

- **Reversible Hydrocolloid**

- tray is inserted into mouth & held in place
- cool water (60-70 F) is ran through tray for no less than 5 minutes
Aqueous Elastomeric Materials

- Reversible Hydrocolloid
- Final Steps

- spray off impression as per mfg.
- put into biohazard labeled bag
- containing 2% potassium solution
Aqueous Elastomeric Materials

Reversible Hydrocolloid

- Common Difficulties
 - Inaccuracy
 - Stiff or grainy material
 - Syringe and tray material did not join
 - Rough/ chalky stone or die surface