Atmospheric Environment of Turfgrasses

Atmospheric conditions affecting turf
- Result from seasonal and daily fluctuations in the weather
- Measurable conditions:
 - Temperature, moisture, light and wind

Atmospheric Conditions
- Daily changes in atmospheric condition
 - Attributable to the rotation of the earth about its axis
- Seasonal changes
 - Result from the revolution of the earth about the sun

Atmospheric Conditions
- Water bodies tend to modify diurnal and seasonal temperature fluctuations

Atmospheric Conditions
- Temperature decreases with altitude
- Cultivation of cool season grasses in the tropics at higher elevation
Light - Solar Radiation

Turfgrasses absorb 50 to 80% of incident solar radiation depending on leaf orientation.

Light

- Turfgrasses convert only 1-2% of incoming light into chemical energy during photosynthesis.
- Remainder:
 - Reradiated at longer wavelengths
 - Transmitted
 - Reflected
 - Absorbed

Light

- Turfgrasses respond to light intensity:
 - Altering leaf orientation
 - High intensity > horizontal orientation
 - Moderate intensity > upright orientation

Light

- Shading changes plant structure:
 - Longer and thinner leaves
 - Reduced density and tillering
 - Shallower rooting, thinner cuticles, lower reserve carbohydrates
 - Failure under very low light intensity
Light

- Shade turf
 - Less tolerant to wear, disease, and environmental stresses

Light

- Shading affects microclimate
 - Moderated diurnal and seasonal temperatures
 - Restricted air movement
 - Increased relative humidity
- Results may be beneficial or detrimental

Light

- Light requirement
 - Energy for maintenance
 - Off setting respiration during day and night
 - Energy for growth
 - Off setting losses from natural senescence and mechanical damage

Light

- Light Exclusion
 - Obstacles that block light penetration
 - Substantial injury under high-temperature conditions

Light

- Cultural management for shading
 - Pruning
 - Removing leaves
 - Removing other objects
 - Reducing traffic
 - Switch from turf to shade tolerant plant types

Light

- Cultural adjustments to low light levels
 - Raising mowing height
 - Compensate for upright growth
 - Reduce nitrogen fertilization rate
 - Reduce irrigation frequency
 - Monitor for diseases in stressed turf
Light

- **Photoperiod**
 - Period of time that a turfgrass is exposed to light
 - Effects on flowering
 - Cool season grasses are long day plants

- **Photoperiod effects on vegetative growth**
 - Short day
 - Increased density and tillering
 - Shorter leaves, smaller shoots, and a more prostrate growth habit

Temperature

- **Expression of heat energy from solar radiation**
- Heat energy received can be transferred

- **Heat Islands turfs**
 - Intense stress as adjacent areas absorb and reradiate heat energy

Temperature

- **Heat transfer processes**
 - Evaporation
 - Radiation
 - Conduction
 - Convection
 - Advection

- **Evaporation/Transpiration**
 - Changing of water from a liquid to a gas
 - Cooling of the plant
- **Radiation**
 - Increases in air temperature as solar radiation is reradiated in form of heat into the atmosphere
Temperature

• Convection
 – Heated air rises over plant surfaces
 – Transfer of heat from the plant to atmosphere

• Advection
 – Air passing over warmed surfaces picks up heat and transfers it to other sites downwind

Temperature management in turf
 – Promoting transpirational cooling
 • Adequate supply of plant available moisture
 – Removing obstacles to air flow

Cardinal temperatures in turfgrass growth

• Optimum Growth Temperature
• Maximum Growth Temperature
• Minimum Growth Temperature
• Min. Survival Temperature
• Max. Survival Temp.

Daily temperature fluctuations
 – Significant temperature changes close to the soil surface
 – Temperatures above turfgrass is lower compared to many other surfaces

Temperature fluctuations
 – Determine duration of optimum growth
 – Determine limits of adaptations of turf
 • Cultural practices can extend limits of adaptations
Temperature

- Temperature changes
 - Latitude and altitude
 - Topography

Moisture

- Up to 90 percent of total mass is water in actively growing turfgrasses

Moisture

- Water functions
 - Maintaining cell turgidity
 - Transporting nutrients and organic compounds
 - Raw material for chemical processes
 - Buffering against temperature fluctuations

Moisture

- Tissue Cooling

Moisture

- Exiting water surrounds the leaf with moist air
 - Boundary layer
 - 1 to 10 mm
 - Reduces rate of transpiration
Moisture

• Moisture stress
 – Release of hormones
 • Induces stomata closure
 • Promotes root growth
 – Grass may go dormant
 – Wilting and death

Moisture

• Drought avoidance
 – Reduce leaf area
 • Tight folding or rolling of leaf blades

Moisture

• Forms of moisture
 – Precipitation
 – Irrigation
 – Water vapor
 – Dew

Moisture

• Water vapor content = relative humidity
 – Directly proportional to temperature
 • Higher temperatures – more moisture can be held
 • Dropping temperature leads to condensation
 – Determines precipitation and transpiration
 • Distribution of grasses and other plant species

Moisture

• Dew
 – Resulting from gutation and condensation
 – May result in enhanced fungal growth and leaf burning
 – Conserves water by delaying onset of transpiration
Moisture

- Gutation
 - Exuding of plant moisture from openings, called hydathodes, at the leaf tips

- Frost, snow, and ice
 - May protect turf from desiccation
 - May enhance disease problems
 - Damage to growing points

Wind

- Effects on turf
 - Transport of debris.
 - Mixing action
 - Injury

- Air circulation
Wind

- Mixing action
 - Boundary layer of a leaf can be dispersed

Wind

- Mixing action
 - Dispersal of excessive heat and moisture accumulations

Wind

- Preventing hot and humid microclimate to develop
 - Disease pressure

Wind

- Desiccation injury

Turfgrass Mixture

- When atmospheric or soil conditions are not uniform
 - Light, soil, temperature, fertility, traffic
 - Disease pressure

- Selection based on range of conditions
 - Limited range of single species to variable conditions

Turfgrass Mixtures

- Benefits
 - Reduced overall turf damage to disease
 - Better shade adaptations
 - Improved wear resistance
 - Improved recuperative capacity
Turfgrass Mixtures

• Guidelines – select species or cultivars
 – Adapted to the site
 – Resistant to local diseases
 – Similar in appearance and competitive abilities
 – At least three cultivars