Regulation of Respiration

- Nervous system regulation
 - Various levels of activity produce different demands
 - Medulla
 - Regulation of respiratory rate
 - \(\text{PaCO}_2\) normal range 35-45 mmHg
Other receptors (e.g., pain) and emotional stimuli acting through the hypothalamus.

Peripheral chemoreceptors: \(O_2, CO_2, H^+\)

Central Chemoreceptors: \(CO_2, H^+\)

Receptors in muscles and joints

Respiratory centers (medulla and pons)

Stretch receptors in lungs

Irritant receptors

Higher brain centers (cerebral cortex—voluntary control over breathing)
Regulation of Respiration

• Nervous system regulation
 • **Hyperventilation:** increased depth and rate of breathing that exceeds the body’s need to remove CO\(_2\)
 • Causes CO\(_2\) levels to decline (hypocapnia)
 • pH increases
 • **Hypoventilation:** decreased rate and depth of breathing
 • Causes CO\(_2\) levels to increase (hypercapnia)
 • pH decreases
Medullary Control Center in Brainstem

Pontine respiratory centers interact with the medullary respiratory centers to smooth the respiratory pattern.

Ventral respiratory group (VRG) contains rhythm generators whose output drives respiration.

Dorsal respiratory group (DRG) integrates peripheral sensory input and modifies the rhythms generated by the VRG.
Regulation of Respiration

- Nervous system regulation
 - Medullary control center
 - Diffuse system of neurons
 - Separate pathways for inspiration and expiration
Regulation of Respiration

- Nervous system regulation
 - Higher brain centers
 - Cerebral cortex
 - Direct signals from the cerebral motor cortex bypass medullary controls
 - Example: voluntary breath holding
 - Hypothalamus
 - Limbic system can modify rate and depth of respiration
 - Examples: breath holding that occurs in anger or gasping with pain, laughing, crying
Regulation of Respiration

- **Chemoreceptors**
 - **Central**
 - pCO_2 most potent stimuli
 - $\uparrow pCO_2$ (hypercapnia) = $\uparrow pCO_2$ in the brain = central chemoreceptor in the medulla stimulated = \uparrow respiratory rate
 - pO_2 has no effect here
Figure 22.25

Arterial P_{CO_2} increases, leading to:

- P_{CO_2} decreases pH in brain extracellular fluid (ECF)
- Central chemoreceptors in medulla respond to H^+ in brain ECF (mediate 70% of the CO_2 response)
- Peripheral chemoreceptors in carotid and aortic bodies (mediate 30% of the CO_2 response)

Afferent impulses:

- Medullary respiratory centers

Efferent impulses:

- Respiratory muscle
- $↑$ Ventilation (more CO_2 exhaled)

Result:

- Arterial P_{CO_2} and pH return to normal

Initial stimulus

Physiological response

Result
Regulation of Respiration

- Nervous system control
 - Peripheral chemoreceptors
 - Carotid and aortic bodies
 - \uparrow CO$_2$ levels are the most powerful respiratory stimulant
 - Also respond to \downarrow pO$_2$ and pH
Peripheral Chemoreceptors

Brain

Sensory nerve fiber in cranial nerve IX
(pharyngeal branch of glossopharyngeal)
External carotid artery
Internal carotid artery
Carotid body
Common carotid artery
Cranial nerve X (vagus nerve)

Sensory nerve fiber in cranial nerve X
Aortic bodies in aortic arch
Aorta
Heart
Regulation of Respiration

• High altitude
 • Quick travel to altitudes above 8000 feet may produce symptoms of acute mountain sickness (AMS)
 o Headaches, shortness of breath, nausea and dizziness
 o In severe cases, lethal cerebral and pulmonary edema
Regulation of Respiration

- High altitude
 - \(\text{pO}_2 \leq 60 \text{ mm Hg} = \text{major stimulus for respiration} \)
 - Peripheral chemoreceptors
 - Hyperventilate \(\rightarrow \) respiratory alkalosis
Regulation of Respiration

- Chronic CO_2 retention disorders
 - CSF buffers reduce central chemoreceptor control
 - Rely on paO_2
 - Excessive O_2 administration = apnea!
 - Example: emphysema
Regulation of Respiration

- Baroreceptors
 - ↓ blood pressure = ↑ respiration
 - Relatively small influence and poorly understood
Higher brain centers (cerebral cortex—voluntary control over breathing)

Other receptors (e.g., pain) and emotional stimuli acting through the hypothalamus

Peripheral chemoreceptors: O_2, CO_2, H^+

Central Chemoreceptors: CO_2, H^+

Receptors in muscles and joints

Respiratory centers (medulla and pons)

Stretch receptors in lungs

Irritant receptors
Regulation of Respiration

- Exercise
 - Intensity and duration
 - Hyperpnea
 - Increase in ventilation (10 to 20 fold) in response to metabolic needs
 - Depth of respiration increases more than rate
 - pCO_2, pO_2, and pH remain surprisingly constant during exercise
 - pCO_2 may decrease
Regulation of Respiration

- Neural factors cause increase in ventilation as exercise begins
 - Psychological stimuli
 - Anticipation of exercise
 - Simultaneous cortical motor activation of skeletal muscles and respiratory centers
 - Excitatory impulses reaching respiratory centers from proprioceptors
Other receptors (e.g., pain) and emotional stimuli acting through the hypothalamus

Peripheral chemoreceptors
O_2, CO_2, H^+

Central Chemoreceptors
CO_2, H^+

Receptors in muscles and joints

Central Chemoreceptors

Respiratory centers (medulla and pons)

Stretch receptors in lungs

Irritant receptors

Higher brain centers (cerebral cortex—voluntary control over breathing)