Respiratory System

Part 2
Respiration

- Exchange of gases between air and body cells
- Three steps
 1. Ventilation
 2. External Respiration
 3. Internal Respiration
Ventilation

- Pulmonary ventilation consists of two phases
 1. Inspiration: gases flow into the lungs
 2. Expiration: gases exit the lungs
- Relies on pressure gradients
 - Atmosphere and alveoli
- Negative pressure breathing
 - Thoracic pressures
 - Atmospheric pressure
Boyle’s Law

- The relationship between the pressure and volume of a fixed quantity of gas in a closed container
- Pressure \((P)\) varies inversely with volume \((V)\):

\[P_1 V_1 = P_2 V_2 \]

While one increases the other decreases
Ventilation

- Intrapleural pressure is subatmospheric
 - Inward elastic recoil of lung tissue
 - Outward elastic recoil of chest wall

[Resting lung volume]
Ventilation

- Atmospheric pressure (P\textsubscript{atm})
 - Pressure exerted by the air surrounding the body
 - 760 mm Hg at sea level
- Thoracic pressures are described relative to P\textsubscript{atm}
 - Negative respiratory pressure is less than P\textsubscript{atm}
 - Positive respiratory pressure is greater than P\textsubscript{atm}
Atmospheric pressure

Intrapleural pressure: 756 mm Hg

Transpulmonary pressure: 760 mm Hg - 756 mm Hg = 4 mm Hg

Thoracic wall

Parietal pleura

Visceral pleura

Pleural cavity

Transpulmonary pressure 760 mm Hg

Intrapleural pressure 756 mm Hg (-4 mm Hg)

Intrapulmonary pressure 760 mm Hg (0 mm Hg)
Ventilation

- Intrapulmonary (intra-alveolar) pressure (P_{pul})
 - Pressure in the alveoli
 - Fluctuates with breathing
 - Always eventually equalizes with P_{atm}
Ventilation

- Intrapleural pressure (P_{ip}):
 - Pressure in the pleural cavity
 - Fluctuates with breathing
 - Always a negative pressure ($<P_{atm}$ and $<P_{pul}$)
Ventilation

- Negative P_{ip} is caused by opposing forces
 - Two inward forces promote lung collapse
 - Elastic recoil of lungs decreases lung size
 - Surface tension of alveolar fluid reduces alveolar size
 - One outward force tends to enlarge the lungs
 - Elasticity of the chest wall pulls the thorax outward
Atmospheric pressure

Thoracic wall

Diaphragm

Lung

Parietal pleura

Visceral pleura

Pleural cavity

Transpulmonary pressure

760 mm Hg

-756 mm Hg

= 4 mm Hg

Intrapleural pressure

756 mm Hg

(-4 mm Hg)

Intrapulmonary pressure

760 mm Hg

(0 mm Hg)
Pulmonary Ventilation

- Inspiration and expiration
- Mechanical processes that depend on volume changes in the thoracic cavity
 - Volume changes \rightarrow pressure changes
 - Pressure changes \rightarrow pressure gradient \rightarrow gases flow to equalize pressure
Inspiration

- An **active** process
 - Inspiratory muscles contract
 - Thoracic volume increases
 - Lungs are stretched and intrapulmonary volume increases
 - Intrapulmonary pressure drops
 - Air flows into the lungs, down its pressure gradient
 - $P_{pul} = P_{atm}$
<table>
<thead>
<tr>
<th>Inspiration</th>
<th>Sequence of events</th>
<th>Changes in anterior-posterior and superior-inferior dimensions</th>
<th>Changes in lateral dimensions (superior view)</th>
</tr>
</thead>
<tbody>
<tr>
<td>① Inspiratory muscles contract (diaphragm descends; rib cage rises).</td>
<td></td>
<td>Ribs are elevated and sternum flares as external intercostals contract.</td>
<td></td>
</tr>
<tr>
<td>② Thoracic cavity volume increases.</td>
<td></td>
<td></td>
<td>External intercostals contract.</td>
</tr>
<tr>
<td>③ Lungs are stretched; intrapulmonary volume increases.</td>
<td></td>
<td>Diaphragm moves inferiorly during contraction.</td>
<td></td>
</tr>
<tr>
<td>④ Intrapulmonary pressure drops (to –1 mm Hg).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑤ Air (gases) flows into lungs down its pressure gradient until intrapulmonary pressure is 0 (equal to atmospheric pressure).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Expiration

• Quiet expiration is normally a **passive** process
 • Inspiratory muscles relax
 • Thoracic cavity volume decreases
 • Elastic lungs recoil and intrapulmonary volume decreases
 • P_{pul} rises
 • Air flows out of the lungs down its pressure gradient until $P_{pul} = 0$
<table>
<thead>
<tr>
<th>Sequence of events</th>
<th>Changes in anterior-posterior and superior-inferior dimensions</th>
<th>Changes in lateral dimensions (superior view)</th>
</tr>
</thead>
<tbody>
<tr>
<td>① Inspiratory muscles relax (diaphragm rises; rib cage descends due to recoil of costal cartilages).</td>
<td>Ribs and sternum are depressed as external intercostals relax.</td>
<td>External intercostals relax.</td>
</tr>
<tr>
<td>② Thoracic cavity volume decreases.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>③ Elastic lungs recoil passively; intrapulmonary volume decreases.</td>
<td>Diaphragm moves superiorly as it relaxes.</td>
<td></td>
</tr>
<tr>
<td>④ Intrapulmonary pressure rises (to +1 mm Hg).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑤ Air (gases) flows out of lungs down its pressure gradient until intrapulmonary pressure is 0.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Expiration
Intrapulmonary pressure. Pressure inside lung decreases as lung volume increases during inspiration; pressure increases during expiration.

Intrapleural pressure. Pleural cavity pressure becomes more negative as chest wall expands during inspiration. Returns to initial value as chest wall recoils.

Volume of breath. During each breath, the pressure gradients move 0.5 liter of air into and out of the lungs.
Air Flow

- Physical factors influencing efficiency of air flow
 - Inspiratory muscles overcome three factors that hinder air passage and pulmonary ventilation
 1. Airway resistance
 2. Alveolar surface tension
 3. Lung compliance

6b. Friction is **inversely** proportional to airway diameter
Air Flow

- Bronchoconstriction
 - Smooth muscle contracts
 - Reduced air flow
Lung Compliance

- Diminished by
 - Nonelastic scar tissue (fibrosis)
 - Reduced production of surfactant
 - Decreased flexibility of the thoracic cage
Gas Law’s

- Dalton’s Law of Partial Pressure
 - Describes how a gas behaves when it is part of a mixture
 - Partial pressure = pressure exerted by a single gas in the mixture = proportional to the percentage of gas in a mixture
 - Total pressure exerted by a mixture of gases is the sum of the pressures exerted by each gas
Gas Law’s

• Dalton’s Law of Partial Pressure
 • Example:
 • Air contains 20.9% O\textsubscript{2}
 • Atmospheric Pressure = 760 mmHg
 \[0.209 \text{P}_{\text{O}_2} \times 760 \text{ mmHg} = 160 \text{ mmHg}\]
 \[= \text{partial pressure of oxygen in the atmosphere}\]
Gas Law’s

- Fick’s Law of Diffusion
 - Gives the rate of diffusion for a given gas across a membrane
 - CO₂ has a high diffusion coefficient and diffuses 20 times more rapidly across a membrane than O₂

\[V_g = (A) (P_1 - P_2) (D) (T) \]
Gas Law’s

- Diseases related to gas diffusion
 - Pulmonary edema
 - COPD
Gas Exchange

- External respiration
 - Pulmonary gas exchange
- Internal respiration
 - Gas exchange between blood capillaries and tissues
Inspired air:
\[P_{O_2} = 160 \text{ mm Hg} \]
\[P_{CO_2} = 0.3 \text{ mm Hg} \]

Alveoli of lungs:
\[P_{O_2} = 104 \text{ mm Hg} \]
\[P_{CO_2} = 40 \text{ mm Hg} \]

Blood leaving lungs and entering tissue capillaries:
\[P_{O_2} = 100 \text{ mm Hg} \]
\[P_{CO_2} = 40 \text{ mm Hg} \]

Blood leaving tissues and entering lungs:
\[P_{O_2} = 40 \text{ mm Hg} \]
\[P_{CO_2} = 45 \text{ mm Hg} \]

Systemic veins
\[P_{O_2} \text{ less than } 40 \text{ mm Hg} \]
\[P_{CO_2} \text{ greater than } 45 \text{ mm Hg} \]
External Respiration

- Exchange of O_2 and CO_2 across the respiratory membrane
 - From lung to blood
- Influenced by
 - Partial pressure gradients
 - Gas solubilities
 - Structural characteristics of the respiratory membrane
External Respiration

- Respiratory membrane
 - Membrane of lung epithelium
 - Pulmonary capillary membrane
 - Surfactant
(c) Detailed anatomy of the respiratory membrane
External Respiration

- Partial pressure gradient for O\textsubscript{2} in the lungs is steep
 - Venous blood Po\textsubscript{2} = 40 mm Hg
 - Alveolar Po\textsubscript{2} = 104 mm Hg

Oxygen readily diffuses from alveoli to lung capillaries
External Respiration

- Partial pressure gradient for CO_2 in the lungs
 - Venous blood $\text{Pco}_2 = 45 \text{ mm Hg}$
 - Alveolar $\text{Pco}_2 = 40 \text{ mm Hg}$
- But...
 - CO_2 is 20 times more soluble in plasma than oxygen
 - CO_2 diffuses in equal amounts with oxygen!
Inspired air:
\[P_{O_2} \] 160 mm Hg
\[P_{CO_2} \] 0.3 mm Hg

Alveoli of lungs:
\[P_{O_2} \] 104 mm Hg
\[P_{CO_2} \] 40 mm Hg

Blood leaving lungs and entering tissue capillaries:
\[P_{O_2} \] 100 mm Hg
\[P_{CO_2} \] 40 mm Hg

Blood leaving tissues and entering lungs:
\[P_{O_2} \] 40 mm Hg
\[P_{CO_2} \] 45 mm Hg

Pulmonary arteries

Pulmonary veins (\(P_{O_2} \) 100 mm Hg)

Systemic veins

Systemic arteries

Tissues:
\[P_{O_2} \] less than 40 mm Hg
\[P_{CO_2} \] greater than 45 mm Hg
Factors Affecting External Respiration

Anatomical adaptations

- Moist surfaces
- Thickness and surface area
- Narrow capillaries = RBC’s single file

Physiological and physical factors

- Pulmonary disease
- Affect of drugs on minute volume
- Partial pressure changes with altitude
Internal Respiration

- Capillary gas exchange in body tissues
- Partial pressures and diffusion gradients are reversed compared to external respiration
 - P_{O_2} in tissue is always lower than in systemic arterial blood
 - P_{CO_2} in tissue is higher than in systemic arterial blood
Inspired air:
\(P_{O_2} \) 160 mm Hg
\(P_{CO_2} \) 0.3 mm Hg

Alveoli of lungs:
\(P_{O_2} \) 104 mm Hg
\(P_{CO_2} \) 40 mm Hg

Blood leaving lungs and entering tissue capillaries:
\(P_{O_2} \) 100 mm Hg
\(P_{CO_2} \) 40 mm Hg

Blood leaving tissues and entering lungs:
\(P_{O_2} \) 40 mm Hg
\(P_{CO_2} \) 45 mm Hg

Pulmonary arteries

Pulmonary veins (\(P_{O_2} \) 100 mm Hg)

Systemic veins

Systemic arteries

Tissues:
\(P_{O_2} \) less than 40 mm Hg
\(P_{CO_2} \) greater than 45 mm Hg