Business

- Optional midterm review Tuesday 5-6pm
- Bring your Physio EX CD to lab this week
- Homework #6 and 7 due in lab this week
 - Additional respiratory questions need to be completed for HW #7…

Midterm #1 is Monday, study hard!
Respiratory System

Part 4
Regulation of Respiration

- Nervous system regulation
 - Various levels of activity produce different demands
 - Medulla
 - Regulation of respiratory rate
 - PaCO_2 normal range 35-45 mmHg
Other receptors (e.g., pain) and emotional stimuli acting through the hypothalamus

Peripheral chemoreceptors
- \(\text{O}_2 \downarrow, \text{CO}_2 \uparrow, \text{H}^+ \uparrow \)

Central Chemoreceptors
- \(\text{CO}_2 \uparrow, \text{H}^+ \uparrow \)

Respiratory centers (medulla and pons)

Irritant receptors

Stretch receptors in lungs

Higher brain centers (cerebral cortex—voluntary control over breathing)
Regulation of Respiration

- Nervous system regulation

 - **Hyperventilation**: increased depth and rate of breathing that exceeds the body’s need to remove CO₂
 - Causes CO₂ levels to decline (hypocapnia)
 - pH increases

 - **Hypoventilation**: decreased rate and depth of breathing
 - Causes CO₂ levels to increase (hypercapnia)
 - pH decreases

 What circumstances might cause these conditions?
Pontine respiratory centers interact with the medullary respiratory centers to smooth the respiratory pattern.

Ventral respiratory group (VRG) contains rhythm generators whose output drives respiration.

Dorsal respiratory group (DRG) integrates peripheral sensory input and modifies the rhythms generated by the VRG.

Medullary Control Center in Brainstem

External intercostal muscles

To inspiratory muscles
Regulation of Respiration

• Nervous system regulation
 • Medullary control center
 • Diffuse system of neurons
 o Separate pathways for inspiration and expiration
Regulation of Respiration

- **Nervous system regulation**
 - **Higher brain centers**
 - **Cerebral cortex**
 - Direct signals from the cerebral motor cortex bypass medullary controls
 - Example: voluntary breath holding
 - **Hypothalamus**
 - Limbic system can modify rate and depth of respiration
 - Examples: breath holding that occurs in anger or gasping with pain, laughing, crying
Regulation of Respiration

• Chemoreceptors
 • Central
 • P_{CO_2} most potent stimuli
 • $\uparrow P_{\text{CO}_2}$ (hypercapnia) = $\uparrow P_{\text{CO}_2}$ in the brain = central chemoreceptor in the medulla stimulated = \uparrow respiratory rate
 • P_{O_2} has no effect here
Figure 22.25

Initial stimulus:

- $\uparrow \text{Arterial } P_{\text{CO}_2}$

Result:

- $\uparrow P_{\text{CO}_2}$ decreases pH in brain extracellular fluid (ECF)

Physiological response:

Central chemoreceptors in medulla respond to H$^+$ in brain ECF (mediate 70% of the CO$_2$ response)

Peripheral chemoreceptors in carotid and aortic bodies (mediate 30% of the CO$_2$ response)

Afferent impulses:

- Medullary respiratory centers

Efferent impulses:

- Respiratory muscle
- \uparrow Ventilation (more CO$_2$ exhaled)

Arterial P_{CO_2} and pH return to normal
Regulation of Respiration

- Nervous system control
 - Peripheral chemoreceptors
 - Carotid and aortic bodies
 - \uparrow CO$_2$ levels are the most powerful respiratory stimulant
 - Also respond to \downarrow PO$_2$ and pH
Peripheral Chemoreceptors

- Brain
- Sensory nerve fiber in cranial nerve IX (pharyngeal branch of glossopharyngeal)
- External carotid artery
- Internal carotid artery
- **Carotid body**
- Common carotid artery
- Cranial nerve X (vagus nerve)
- Sensory nerve fiber in cranial nerve X
- **Aortic bodies in aortic arch**
- Aorta
- Heart
Regulation of Respiration

- High altitude
 - Quick travel to altitudes above 8000 feet may produce symptoms of acute mountain sickness (AMS)
 - Headaches, shortness of breath, nausea, and dizziness
 - In severe cases, lethal cerebral and pulmonary edema
Regulation of Respiration

- High altitude
 - $\text{Po}_2 \leq 60 \text{ mm Hg} = \text{major stimulus for respiration}$
 - Peripheral chemoreceptors
 - Hyperventilate \rightarrow respiratory alkalosis
Regulation of Respiration

- Chronic CO$_2$ retention disorders
 - CSF buffers reduce central chemoreceptor control
 - Rely on PaO$_2$
 - Excessive O$_2$ administration = apnea!
- Example: emphysema
Regulation of Respiration

- Baroreceptors
 - ↓ blood pressure = ↑ respiration
 - Relatively small influence and poorly understood
Figure 22.24

Higher brain centers (cerebral cortex—voluntary control over breathing)

Other receptors (e.g., pain) and emotional stimuli acting through the hypothalamus

Peripheral chemoreceptors: O_2, CO_2, H^+

Central Chemoreceptors: CO_2, H^+

Receptors in muscles and joints

Respiratory centers (medulla and pons)

Stretch receptors in lungs

Irritant receptors
Regulation of Respiration

- Exercise
 - Intensity and duration
- Hyperpnea
 - Increase in ventilation (10 to 20 fold) in response to metabolic needs
 - Depth of respiration increases more than rate
 - P_{co_2}, P_{o_2}, and pH remain surprisingly constant during exercise
 - P_{co_2} may decrease
Regulation of Respiration

- Neural factors cause increase in ventilation as exercise begins
 - Psychological stimuli
 - Anticipation of exercise
 - Simultaneous cortical motor activation of skeletal muscles and respiratory centers
 - Excitatory impulses reaching respiratory centers from proprioceptors
Higher brain centers (cerebral cortex—voluntary control over breathing)

Other receptors (e.g., pain) and emotional stimuli acting through the hypothalamus

Peripheral chemoreceptors
\(\text{O}_2^{↓}, \text{CO}_2^{↑}, \text{H}^+^{↑} \)

Central Chemoreceptors
\(\text{CO}_2^{↑}, \text{H}^+^{↑} \)

Respiratory centers (medulla and pons)

Stretch receptors in lungs

Irritant receptors

Receptors in muscles and joints
Questions?