Objectives

• Understand the generalized functions of the skeletal system
• Identify long bone structures
• Understand how bones are formed
• Major subdivisions of skeleton and bones in each
• Major disorders of bones and joints
Functions of Skeletal System

- SUPPORT
- PROTECTION
- MOVEMENT
- STORAGE of calcium, a vital resource
- BLOOD CELL FORMATION—process is called hematopoiesis
Types of Bones

• Four major types, according to overall shape of the bone
 – Long—example: humerus (upper arm)
 – Short—example: carpals (wrist)
 – Flat—example: frontal (skull)
 – Irregular—example: vertebrae (spinal bones)
Types of Bones

• Structure of long bones
 – **Diaphysis**, or shaft—hollow tube of hard compact bone
 – **Medullary cavity**—hollow space inside the diaphysis that contains yellow marrow
 – **Epiphyses**, or ends, of the bone—made of spongy bone that contains red bone marrow
 – **Articular cartilage**—thin layer that covers each epiphysis; provides a cushion
 – **Periosteum**—strong, fibrous membrane covering bone everywhere except at joint surfaces
 – **Endosteum**—thin membrane that lines medullary cavity
Microscopic Structure of Bone and Cartilage

• Two major types of connective tissue: bone and cartilage
• Bone types
 – Spongy
 • Texture from needlelike threads of bone called *trabeculae* surrounded by network of open spaces
 • Found in epiphyses of bones
 • Spaces contain red bone marrow
Microscopic Structure of Bone and Cartilage

• Bone types
 – Compact
 • Structural unit is an osteon-calcified matrix arranged in multiple layers or rings called concentric lamella
 • Bone cells, called osteocytes,
Microscopic Structure of Bone and Cartilage

• Structural unit called osteon or Haversian system
Microscopic Structure of Bone and Cartilage

• Cartilage
 – Cell type called chondrocytes
 – Matrix is flexible gel-like substance and lacks blood vessels
Bone Formation and Growth

• New bone-forming cells are called **osteoblasts** and bone resorbing cells are called **osteoclasts**

• The ability of bone to ossify, grow, change shape, heal after injury, and respond to stress occurs because of continuous “sculpting” by osteoblasts and osteoclasts
Bone Formation and Growth

• Bone is formed by two processes
 – Most bones develop from a process called endochondral ossification
Bone Formation and Growth

• Endochondral bone formation
 – Bones develop from cartilage models
 – Center of ossification first appears in diaphysis
 – Centers of ossification then develop in epiphyses
Bone Formation and Growth

• Endochondral bone formation
 – Epiphyseal plate of cartilage between epiphyses and diaphysis remains until skeletal maturity
 – Epiphyseal line (bone) replaces epiphyseal plate (cartilage) when growth ceases
Bone Formation and Growth

• Early bone development (before birth) consists of cartilage and fibrous structures
• Cartilage models gradually replaced by calcified bone matrix—process called endochondral ossification
• Osteoblasts form new bone, and osteoclasts resorb bone
Divisions of Skeleton

• **Axial skeleton** (80 bones)
 – Skull
 – Spine, or vertebral column
 – Thorax

• **Appendicular skeleton** (126 bones)
 – Upper extremities, including shoulder (pectoral) girdle
 – Lower extremities, including hip (pelvic) girdle
Divisions of Skeleton

• **Axial Skeleton** composed of the following divisions and their subdivisions

• Spine or vertebral column
 • Cervical (7 bones)
 • Thoracic (12 bones)
 • Lumbar (5 bones)
 • Sacrum (1 bone)
 • Coccyx (1 bone)
Divisions of Skeleton

• Appendicular Skeleton composed of the following divisions and their subdivisions
 – Thorax
 • Composed of:
 – 12 pairs of ribs
 – Sternum or breastbone
 – Thoracic vertebrae
 • Ribs
 – True ribs—rib pairs 1 through 7
 – False ribs—rib pairs 8 through 10
 – Floating ribs—rib pairs 11 and 12
Divisions of Skeleton

– Appendicular skeleton (126 bones)
 • Bones in shoulder or pectoral girdle connect bones of upper extremity (arm, forearm, wrist, and hands) to axial skeleton
 • Bones in hip or pelvic girdle connect bones of lower extremity (thigh, leg, ankle, and foot) to axial skeleton
Divisions of Skeleton

• Skeleton composed of the following divisions and their subdivisions
 – Upper extremity
 • Shoulder or pectoral girdle formed by:
 – Scapula
 – Clavicle (frequently fractured)
 • Arm—humerus
 • Forearm—radius and ulna
 • Wrist—8 carpal bones
 • Hand—5 metacarpal bones
 • Fingers—14 phalanges or finger bones
Divisions of Skeleton

• Skeleton composed of the following divisions and their subdivisions
 – Lower extremity
 • Hip or pelvic girdle formed by the two coxal or pelvic bones (one on each side) with sacrum and coccyx behind
Divisions of Skeleton

• Skeleton composed of the following divisions and their subdivisions
 – Thigh bone—femur
 • Patella or kneecap articulates with femur and tibia
 • Lower leg—tibia ("shinbone") and fibula
Divisions of Skeleton

• Skeleton composed of the following divisions and their subdivisions
 – Foot
 • 5 metatarsal bones
 • 7 tarsal bones (calcaneus or heel bone is largest tarsal)
 • 14 phalanges or toe bones
 • 3 arches of foot—two longitudinal (medial and lateral) and a transverse or metatarsal arch—if weakened, result is “flat feet”
Differences Between a Man’s and a Woman’s Skeleton

- Size—male skeleton generally larger
- Shape of pelvis—male pelvis deep and narrow; female pelvis broad and shallow
- Size of pelvic inlet—female pelvic inlet generally wider; normally large enough for baby’s head to pass through it
- Pubic angle—angle between pubic bones of female generally wider
Joint (Articulations)

• Joint types classified by degree of movement
 – Synarthrosis (no movement)—fibrous connective tissue grows between articulating bones (e.g., sutures of skull)
 – Amphiarthrosis (slight movement)—cartilage connects articulating bones (e.g., symphysis pubis)
Joint (Articulations)

• Joint types
 – Diarthrosis (free movement)—most joints belong to this class
 • Structures of freely movable joints—joint capsule and ligaments hold adjoining bones together but permit movement at joint
 • Articular cartilage—covers joint ends of bones and absorbs jolts
 • Synovial membrane—lines joint capsule and secretes lubricating fluid
 • Joint cavity—space between joint ends of bones
Joint (Articulations)

- Freely movable joints
 - Ball-and-socket
 - Hinge
Skeletal Disorders

• Tumors of bone and cartilage
 – Osteosarcoma
 • Most common and serious malignant bone neoplasm
 • Frequent sites include distal femur and proximal tibia and humerus
 – Chondrosarcoma
 • Cancer of skeletal hyaline cartilage
 • Second most common cancer of skeletal tissues
Skeletal Disorders

• Metabolic bone diseases
 – Osteoporosis
 • Characterized by loss of calcified bone matrix and reduction in number of trabeculae in spongy bone
 • Bones fracture easily, especially in wrists, hips, and vertebrae
 • Treatment includes drug therapy, exercise, and dietary supplements of calcium and vitamin D
Skeletal Disorders

• Metabolic bone diseases
 – Rickets and osteomalacia—both diseases characterized by loss of bone minerals related to vitamins

• Rickets
 – Loss of bone minerals occurs in infants and young children before skeletal maturity
 – Lack of bone rigidity causes gross skeletal changes (bowing of legs)
 – Treated with vitamin D
Skeletal Disorders

• Metabolic bone diseases
 – *Osteogenesis* imperfecta (also called *brittle bone disease*)
 • Bones are brittle because of lack of organic matrix
 • Treatment may include splinting to reduce fracture and drugs that decrease cell activity
Skeletal Disorders

• Bone infection
 – Osteomyelitis
 • General term for bacterial (usually staphylococcal) infection of bone
 • Treatment may involve surgery, drainage of pus, and IV antibiotic treatment—often over prolonged periods
Skeletal Disorders

• Bone fractures
 – Open (compound) fractures pierce the skin and closed (simple) fractures do not
 – Fracture types include complete and incomplete, linear, transverse and oblique
• Joint disorders
 – Noninflammatory joint disorders—do not usually involve inflammation of the synovial membrane; symptoms tend to be local and not systemic
 • Osteoarthritis, or degenerative joint disease (DJD)
 – Most common noninflammatory disorder of movable joints—often called “wear and tear” arthritis
 – Symptoms: joint pain, morning stiffness
 – Most common cause for partial and total hip and knee replacements
Skeletal Disorders

• Joint disorders
 – Noninflammatory joint disorders
 • Traumatic injury
 – Dislocation or subluxation—articular surfaces of bones in joint are no longer in proper contact
 – Sprain—acute injury to ligaments around joints (e.g., whiplash type injuries)
 – Strain—acute injury to any part of the muscle, tendon, junction between the two, and attachments to bone)
Skeletal Disorders

• Joint disorders
 – Inflammatory joint disorders
 • *Arthritis*: general name for several inflammatory joint diseases that may be caused by infection, injury, genetic factors, and autoimmunity
 • Inflammation of the synovial membrane occurs, often with systemic signs and symptoms
Skeletal Disorders

• Joint disorders
 – Inflammatory joint disorders
 • Rheumatoid arthritis
 – Systemic autoimmune disease—chronic inflammation of synovial membrane with involvement of other tissues such as blood vessels, eyes, heart, and lungs
 – Gouty arthritis—synovial inflammation caused by gout, a condition in which sodium urate crystals form in joints and other tissues
 – Infectious arthritis—arthritis resulting from infection by a pathogen, as in Lyme arthritis and ehrlichioses, caused by two different bacteria that are transmitted to humans by tick bites
Osteoarthritis
Rheumatoid Arthritis and Gouty Arthritis