Chapter 12

Blood
Objectives

• Describe the primary functions of blood
• Describe the characteristics of blood plasma
• List the formed elements of blood and identify the most important function of each
• Discuss anemia in terms of red blood cell numbers and hemoglobin content
Objectives

• Explain the steps involved in blood clotting
• Describe ABO and Rh blood typing
• Understand the medical terms associated with blood: hematocrit, leukocytosis, leukopenia, polycythemia, sickle cell, phagocytosis, acidosis, thrombosis, erythroblastosis, fetalis, serum, fibrinogen, Rh factor, anemia, hemophilia, thrombocytopenia
• Name two common disorders associated with each type of blood cell
Blood Composition and Volume

• Blood components
 – Liquid fraction of whole blood (extracellular part) called *plasma*
 – Cellular components make up the formed elements

• Normal volumes of blood
 – Plasma—2.6 L
 – Formed elements—2.4 L
 – Whole blood—4 to 6 L average or 7% to 9% of total body weight
Buffy Coat

• White blood cells and platelets
Blood Composition and Volume

• Blood pH
 – Blood is alkaline—pH 7.35 to pH 7.45
 – Blood pH decreased toward neutral creates a condition called acidosis

• Blood donations
 – Approximately 14 million units donated annually
 – Plasma volume expanders (such as albumin) can only maintain blood volume after hemorrhage for short periods
 – Storage of donated blood limited to 6 weeks
Blood Composition and Volume

• Blood types
 – ABO system
 • Type A blood—type A antigens in RBCs; anti-B type antibodies in plasma
 • Type B blood—type B antigens in RBCs; anti-A type antibodies in plasma
 • Type AB blood—type A and type B antigens in RBCs; no anti-A or anti-B antibodies in plasma; called universal recipient blood
 • Type O blood—no type A or type B antigens in RBCs; both anti-A and anti-B antibodies in plasma; called universal donor blood
To understand blood is to understand clumping

<table>
<thead>
<tr>
<th>Recipient's blood</th>
<th>Reactions with donor's blood</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC antigens</td>
<td>Plasma antibodies</td>
</tr>
<tr>
<td>None (Type O)</td>
<td>Anti-A Anti-B</td>
</tr>
<tr>
<td>A (Type A)</td>
<td>Anti-B</td>
</tr>
<tr>
<td>B (Type B)</td>
<td>Anti-A</td>
</tr>
<tr>
<td>AB (Type AB)</td>
<td>(None)</td>
</tr>
</tbody>
</table>

Normal blood Agglutinated blood
Blood Composition and Volume

• Blood types
 – Rh system
 • Rh-positive blood—Rh factor antigen present in RBCs
 • Rh-negative blood—no Rh factor present in RBCs; no anti-Rh antibodies present naturally in plasma; anti-Rh antibodies, however, appear in the plasma of Rh-negative persons if Rh-positive RBCs have been introduced into their bodies
 • Erythroblastosis fetalis—may occur when Rh-negative mother carries a second Rh-positive fetus; caused by mother’s Rh antibodies reacting with baby’s Rh-positive cells
Blood Composition and Volume

• Blood plasma
 – Liquid fraction of whole blood minus formed elements
 – Composition—water containing many dissolved substances including:
 • Foods, salts
 • About 3% of total O_2 transported in blood
 • About 5% of total CO_2
Blood Composition and Volume

• Blood plasma
 – Composition
 • Most abundant solutes dissolved in plasma are plasma proteins
 – Albumins
 – Globulins
 – Fibrinogen
 – Prothrombin
 – Plasma minus clotting factors called serum
 • Serum is liquid remaining after whole blood clots
 • Serum contains antibodies
Blood Composition and Volume

• Formed elements
 – Types
 • RBCs (erythrocytes)
 • WBCs (leukocytes)
 – Granular leukocytes—neutrophils, eosinophils, and basophils
 – Nongranular leukocytes—lymphocytes and monocytes
 – Platelets or thrombocytes
Blood Composition and Volume

• Formed elements
 – Numbers
 • RBCs—4.2 to 6.2 million/mm3 of blood
 • WBCs—5000 to 10,000/mm3 of blood
 • Platelets—140,000 to 340,000/mm3 of blood
 – Formation
 • Red bone marrow (myeloid tissue) forms all blood cells except some lymphocytes and monocytes
 • Most other cells formed by lymphatic (lymphoid) tissue in the lymph nodes, thymus, and spleen
Mechanisms of Blood Disease

• Most blood diseases result from failure of myeloid and lymphatic tissues
 – Causes include toxic chemicals, radiation, inherited defects, nutritional deficiencies, and cancer, including leukemia
Mechanisms of Blood Disease

• Aspiration biopsy cytology (ABC) permits examination of blood-forming tissues to assist in diagnosis of blood diseases
• Bone marrow, cord blood, and hematopoietic stem cell transplants may be used to replace diseased or destroyed blood-forming tissues
Erythrocytes (RBCs)

• Excellent example of how structural adaptation affects biologic function
 – Tough and flexible plasma membrane deforms easily allowing RBCs to pass through small-diameter capillaries
 – Biconcave disk (thin center and thicker edges) results in large cellular surface area
 – Absence of nucleus and cytoplasmic organelles limits life span to about 120 days but provides more cellular space for red pigment called hemoglobin (Hb)
Erythrocytes (RBCs)

- Iron (Fe), folate (a B vitamin), and vitamin B_{12} are among the critical nutrients needed to manufacture red blood cells in the red bone marrow.
- Named according to size: normocytes (normal size about 7-9 μm in diameter); microcytic (small size); macrocytic (large size).
- Named according to hemoglobin content of cell: normochromic (normal Hb content); hypochromic (low Hb content); hyperchromic (high Hb content).
Erythrocytes (RBCs)

• General functions
 – Transport of respiratory gases (O₂ and CO₂)
 • Combined with hemoglobin
 – Oxyhemoglobin (Hb + O₂)
 – Carbaminohemoglobin (Hb + CO₂)
 • CO₂ inside the RBC as bicarbonate
 – Important role in homeostasis of acid base balance
Erythrocytes (RBCs)

• General functions
 – Complete blood cell count (CBC)—battery of laboratory tests used to measure the amounts or levels of many blood constituents
 – Hematocrit (packed cell volume or PCV) is the percentage of whole blood that is RBCs
Red Blood Cell Disorders

• Most often related to either overproduction of RBCs—called *polycythemia* or to low oxygen-carrying capacity of blood—called *anemia*

• Polycythemia
 – Cause is generally cancerous transformation of red bone marrow
 – Dramatic increase in RBC numbers—often in excess of 10 million/mm³ of blood—hematocrit may reach 60%
Red Blood Cell Disorders

• Polycythemia
 – Signs and symptoms
 • Increased blood viscosity or thickness
 • Slow blood flow and coagulation problems
 • Frequent hemorrhages
 • Distention of blood vessels and hypertension
Red Blood Cell Disorders

• Polycythemia
 – Treatment
 • Blood removal
 • Irradiation and chemotherapy to suppress RBC production
Red Blood Cell Disorders

• Anemia
 – Caused by low numbers or abnormal RBCs or by low levels or defective types of hemoglobin
 • Normal Hb levels 12-14 g/100 mL of blood
 • Low Hb level (below 9 g/100 mL of blood) classified as anemia
Red Blood Cell Disorders

• Anemia
 – Majority of clinical signs of anemia related to low tissue oxygen levels
 • Fatigue; skin pallor
 • Weakness; faintness; headache
 • Body compensates by increasing heart and respiratory rates
Red Blood Cell Disorders

• Anemia
 – Hemorrhagic anemia
 • Acute—blood loss is immediate (e.g., surgery or trauma)
 • Chronic—blood loss occurs over time (e.g., ulcers or cancer)
 – Aplastic anemia
 • Characterized by low RBC numbers and destruction of bone marrow
 • Often caused by toxic chemicals, irradiation or certain drugs
Red Blood Cell Disorders

– Deficiency anemias—caused by inadequate supply of some substance needed for RBC or hemoglobin production

 • Pernicious anemia
 – Caused by vitamin B_{12} deficiency
 – Genetic-related autoimmune disease
 – Decreased RBC, WBC, and platelet numbers
 – RBCs are macrocytic
 – Classic symptoms of anemia coupled with CNS impairment
 – Treatment is repeated vitamin B_{12} injections
Red Blood Cell Disorders

– Deficiency anemias
 • Folate deficiency anemia
 – Caused by folate (vitamin B₉) deficiency
 – Decreased RBC count
 – Common in alcoholism and malnutrition
Red Blood Cell Disorders

• Iron deficiency anemia
 – Caused by deficiency or inability to absorb iron needed for Hb synthesis (dietary iron deficiency is common worldwide)
 – RBCs are microcytic and hypochromic
 – Hematocrit is decreased
 – Treatment is oral administration of iron compounds
Red Blood Cell Disorders

– Hemolytic anemias

• Caused by decreased RBC life span or increased RBC rate of destruction
• Symptoms, such as jaundice, swelling of spleen, gallstone formation, and tissue iron deposits, are related to retention of RBC breakdown products
Red Blood Cell Disorders

– Hemolytic anemias
 • Sickle cell anemia
 – Genetic disease resulting in formation of abnormal hemoglobin (HbS) primarily in black race
 – RBCs become fragile and assume sickled shape when blood oxygen levels decrease
 – Sickle cell trait is mild (one defective gene)
 – Sickle cell disease more serious (two defective genes); causes blood stasis, clotting and “crises” that may be fatal
 – Affects 1 in every 600 black newborns
Question 5

Ryan Byers—What is sickle cell anemia?
Red Blood Cell Disorders

- **Thalassemia**
 - Group of inherited hemolytic anemias occurring primarily in people of Mediterranean descent
 - RBCs microcytic and short lived
 - Present as mild thalassemia trait and severe thalassemia major
 - Hb levels often fall below 7 mcg/100 mL of blood in thalassemia major
Red Blood Cell Disorders

• Thalassemia
 – Classic symptoms of anemia coupled with skeletal deformities and swelling of spleen and liver
 – Marrow and stem cell transplantation needed for long-term treatment success
Red Blood Cell Disorders

• Hemolytic disease of newborn and erythroblastosis fetalis
 – Caused by blood ABO or Rh factor incompatibility during pregnancy between developing baby and mother
 – Maternal antibodies against “foreign” fetal RBCs or Rh factor can cross placenta, enter the fetal circulation, and destroy the unborn baby’s red cells
 – Symptoms in developing fetus related to decline in RBC numbers and Hb levels; jaundice, intravascular coagulation, and heart and lung damage are common
• Hemolytic disease of newborn and erythroblastosis fetalis
 – Treatment may include utero blood transfusions and early delivery of the baby
 – Prevention of Rh factor incompatibility now possible by administration of RhoGAM to Rh-negative mothers
Leukocytes (WBCs)

- Categorized by presence of granules (granulocytes) or absence of granules (agranulocytes)
- WBC count—normal range is 5000 to 10,000/mm3 of blood
 - Leukopenia—abnormally low WBC count (below 5000/mm3 of blood)
 - Occurs infrequently
 - May occur with malfunction of blood-forming tissues or diseases affecting immune system, such as AIDS
Leukocytes (WBCs)

- WBC count
 - Leukocytosis—abnormally high WBC count (over 10,000/mm³ of blood)
 - Frequent finding in bacterial infections
 - Classic sign in blood cancers (leukemia)
 - Differential WBC count—component test in CBC; measures proportions of each type of WBC in blood sample
Leucocytes in blood smears

A Neutrophil
B Eosinophil
C Basophil
D Lymphocyte
E Monocyte
Leukocytes (WBCs)

Leukocyte types and functions

Granulocytes—include neutrophils; eosinophils; basophils

- **Neutrophils**
 - Most numerous type of phagocyte
 - Numbers increase in bacterial infections

- **Eosinophils**
 - Weak phagocyte
 - Active against parasites and parasitic worms
 - Involved in allergic reactions
Leukocytes (WBCs)

– Granulocytes
 • Basophils
 – Related to mast cells in tissue spaces
 – Both mast cells and basophils secrete histamine (related to inflammation)
 – Basophils also secrete heparin (an anticoagulant)
Leukocytes (WBCs)

– Agranulocytes—monocytes in peripheral blood (macrophages in tissues); lymphocytes—B lymphocytes (plasma cells) and T lymphocytes

• Monocytes
 – Largest leukocyte
 – Aggressive phagocyte—capable of engulfing larger bacteria and cancer cells
 – Develop into much larger cells called macrophages after leaving blood to enter tissue spaces
Leukocytes (WBCs)

- Agranulocytes
 - Lymphocytes
 - B lymphocytes involved in immunity against disease by secretion of antibodies—kind of like a navy ship using land mines at sea that wait
 - Mature B lymphocytes called plasma cells
 - T lymphocytes involved in direct attack on bacteria or cancer cells (not antibody production)
 Like a direct attack by a dive bomber air plane
• Two major types of WBC cancers or neoplasms
 – Lymphoid neoplasms—result from B and T lymphocyte precursor cells or their descendendent cell types
 – Myeloid (marrow) neoplasms—result from transformation of precursor cells of granulocytic WBCs, monocytes, RBCs, and platelets
White Blood Cell Disorders

• Multiple myeloma
 – Cancer of B lymphocytes called *plasma cells*
 – Most deadly blood cancer in people over age 65
 – Causes bone marrow dysfunction and production of defective antibodies
White Blood Cell Disorders

• Multiple myeloma –think marrow!
 – Characterized by:
 • Recurrent infections and anemia
 • Destruction and fracture of bones
 – Treatment includes chemotherapy, drug, antibody therapy, and marrow and stem cell transplantation
White Blood Cell Disorders

• Leukemias—WBC-related blood cancers
 – Characterized by marked leukocytosis
 – Identified as:
 • Acute—rapid development of symptoms
 • Chronic—slow development of symptoms
 • Lymphoid
 • Myeloid—pertaining to bone marrow
White Blood Cell Disorders

• Common types of leukemia
 – Chronic lymphocytic leukemia (CLL)
 • Average age of onset is 65; rare under age 30
 • More frequent in men than women
 • Often diagnosed unexpectedly in routine physical exams with discovery of marked B lymphocytic leukocytosis
 • Generally mild symptoms include anemia, fatigue, and enlarged often painless lymph nodes
 • Most patients live many years following diagnosis
 • Treatment of severe cases involves chemotherapy and irradiation
Many B lymphocytes found in acute lymphocytic leukemia
– Acute lymphocytic leukemia (ALL)

- Primarily a disease of children between 3 and 7 years of age; 80% of children who develop leukemia have this form of the disease
- Highly curable in children but less so in adults
White Blood Cell Disorders

– Chronic myeloid leukemia (CML)
 • Accounts for about 20% of all cases of leukemia
 • Occurs most often in adults between 25 and 60 years of age
 • Caused by cancerous transformation of granulocytic precursor cells in the bone marrow
 • Onset and progression of disease is slow with symptoms of fatigue, weight loss, and weakness
– Chronic myeloid leukemia (CML)
 • Diagnosis often made by discovery of marked granulocytic leukocytosis and extreme spleen enlargement
 • Treatment by new “designer drug” Gleevec or bone marrow transplants is curative in over 70% of cases
The Case of Don Klock

- Diagnosed with chronic myeloid leukemia last year.
- Could not afford drug Gleevec costing $2000 per month.
- Bought prescription in Canada for $800.00 month
- Leukemia symptoms gone within five months after taking!!!
White Blood Cell Disorders

– Acute myeloid leukemia (AML)
 • Accounts for 80% of all cases of acute leukemia in adults and 20% of acute leukemia in children
 • Characterized by sudden onset and rapid progression
 • Symptoms: leukocytosis, fatigue, bone and joint pain, spongy bleeding gums, anemia, recurrent infections
 • Prognosis is poor with only about 50% of children and 30% of adults achieving long-term survival
 • Bone marrow and stem cell transplantation has increased cure rates in selected patients
White Blood Cell Disorders

- Infectious mononucleosis
 - Noncancerous WBC disorder
 - Highest incidence between 15 and 25 years of age
 - Caused by virus in saliva
 - Leukocytosis of atypical lymphocytes with abundant cytoplasm and large nuclei
White Blood Cell Disorders

• Infectious mononucleosis
 – Symptoms include fever, severe fatigue, sore throat, rash, and enlargement of lymph nodes and spleen
 – Generally self-limited and resolves without complications in about 4 to 6 weeks
Typical lymphocyte on left
Atypical on right
Platelets and Blood Clotting

• Platelets
 – Play essential role in blood clotting
 • Blood vessel damage causes platelets to become sticky and form a “platelet plug”
 • Accumulated platelets release additional clotting factors that enter into the clotting mechanism
Platelets and Blood Clotting

- Clotting mechanism
 - Damaged tissue cells release clotting factors leading to formation of prothrombin activator, which combines with platelet-produced prothrombin activator
 - Prothrombin activator and calcium convert prothrombin to thrombin
 - Thrombin reacts with fibrinogen to form fibrin
 - Fibrin threads form a tangle to trap RBCs (and other formed elements) to produce a blood clot
Note the fibrin mesh trapping the blood cells
Platelets and Blood Clotting

• Altering the blood clotting mechanism
 – Application of gauze (rough surface) to wound causes platelet aggregation and release of clotting factors
 – Administration of vitamin K increases synthesis of prothrombin
 – Coumadin (drug) delays clotting by inhibiting prothrombin synthesis
Platelets and Blood Clotting

• Altering the blood clotting mechanism
 – Heparin delays clotting by inhibiting conversion of prothrombin to thrombin
 – Drug called tissue plasminogen activator (TPA) used to dissolve clots that have already formed
Platelets and Blood Clotting

• Clotting disorders
 – Thrombus—stationary blood clot
 – Embolus—circulating blood clot (TPA used to dissolve clots that have already formed)
An embolism
Platelets and Blood Clotting

- Clotting disorders - The Disease of Young Nikolai of Russia
 - Hemophilia - X-linked inherited disorder that results from inability to produce factor VIII (a plasma protein) responsible for blood clotting
 - Most serious “bleeding disease” worldwide; hemophilia A most common form
 - Characterized by easy bruising, deep muscle hemorrhage, blood in urine, and repeated episodes of bleeding into joints causing pain and deformity
 - Treatment includes administration of factor VIII, injury prevention, and avoiding drugs such as aspirin that alter the clotting mechanism
Platelets and Blood Clotting

- Clotting disorders
 - Thrombocytopenia—caused by reduced platelet counts
 - Characterized by bleeding from small blood vessels, most visibly in the skin and mucous membranes
 - Platelet count below 20,000/mm3 may cause catastrophic bleeding (normal platelet count 150,000-400,000/mm3)
 - Most common cause is bone marrow destruction by drugs, chemicals, radiation, and diseases such as cancer, lupus, and HIV/AIDS
 - Treatment may involve transfusion of platelets, corticosteroid type drugs, or removal of the spleen