Respiratory Regulation and Respiratory Disease

Regulation of Respiration

- Nervous system regulation
 - Various levels of activity produce different demands
 - Medulla
 - Regulation of respiratory rate
 - PaCO₂ normal range 35-45 mmHg

Regulation of Respiration

- Nervous system regulation
 - Hyperventilation: increased depth and rate of breathing that exceeds the body’s need to remove CO₂
 - Causes CO₂ levels to decline (hypocapnia)
 - pH increases (alkalosis)
 - Hypoventilation: decreased rate and depth of breathing
 - Causes CO₂ levels to increase (hypercapnia)
 - pH decreases (acidosis)

Regulation of Respiration

- Nervous system regulation
 - Medullary control center
 - Diffuse system of neurons
 - Separate pathways for inspiration and expiration

Regulation of Respiration

- Nervous system regulation
 - Higher brain centers
 - Cerebral cortex
 - Direct signals from the cerebral motor cortex bypass medullary controls
 - Example: voluntary breath holding
 - Hypothalamus
 - Limbic system can modify rate and depth of respiration
 - Examples: breath holding that occurs in anger or gasping with pain, laughing, crying
Regulation of Respiration

• Chemoreceptors
 — Central
 • pCO₂ most potent stimuli
 \[\uparrow \text{pCO}_2 \text{ (hypercapnia)} \]
 \[\downarrow \text{pCO}_2 \text{ in the brain} \]
 central chemoreceptor in the medulla stimulated
 \[\uparrow \text{respiratory rate} \]

• Note that pO₂ has no effect here

Regulation of Respiration

• Nervous system control
 — Peripheral chemoreceptors
 • Carotid and aortic bodies
 \[\uparrow \text{CO}_2 \text{ levels are the most powerful respiratory stimulant} \]
 • Also respond to \(\downarrow \text{pO}_2 \) and pH

Regulation of Respiration

• High altitude
 — Quick travel to altitudes above 8000 feet may produce symptoms of acute mountain sickness (AMS)
 - Headaches, shortness of breath, nausea and dizziness
 - In severe cases, lethal cerebral and pulmonary edema

Regulation of Respiration

• High altitude
 — \(\text{pO}_2 \leq 60 \text{ mm Hg} \) = major stimulus for respiration
 • Peripheral chemoreceptors sense low \(\text{O}_2 \) = increase respiration rate
 — Hyperventilate \(\rightarrow \) respiratory alkalosis
Regulation of Respiration

- Chronic CO$_2$ retention disorders
 - CSF buffers reduce central chemoreceptor control
 - Rely on paO$_2$
 - Excessive O$_2$ administration = apnea!
 - Example: emphysema

- Exercise
 - Intensity and duration
 - Hyperpnea – increase in depth of breathing
 - Increase in ventilation (10 to 20 fold) in response to metabolic needs
 - Depth of respiration increases more than rate
 - pCO$_2$, pO$_2$, and pH remain surprisingly constant during exercise
 - pCO$_2$ may decrease

- Neural factors cause increase in ventilation as exercise begins
 - Psychological stimuli
 - Anticipation of exercise
 - Simultaneous cortical motor activation of skeletal muscles and respiratory centers
 - Excitatory impulses reaching respiratory centers from proprioceptors

Respiratory Diseases

- COPD
 - Emphysema
 - Asthma
- Pneumonia
- Tuberculosis
- Lung cancer
- Cystic fibrosis
- Smoking
COPD
- Chronic obstructive pulmonary disease (COPD)
- End-stage condition of patients with 2 or more of:
 - Emphysema
 - Asthma
 - Chronic bronchitis

Irreversible decrease in the ability to force air out of the lungs

COPD
- History of smoking in 80% of patients
- Symptoms
 - Dyspnea
 - Labored breathing (“air hunger”)
 - Coughing
 - Frequent pulmonary infections
 - Respiratory failure (hypoventilation) accompanied by respiratory acidosis

Peak Flow Meter
Used to assess rate of exhalation in obstructive lung disease

Emphysema
- Word literally means “inflation”
- Destruction of alveolar walls
 - Leads to large but inelastic alveolar spaces
- Consequences
 1. Must work hard during expiration (enlist accessory muscles)
 2. Bronchioles collapse during expiration (CO₂ trapping)
 3. Pulmonary capillaries damaged → increased pulmonary resistance → decreased blood flow to lung → right ventricular systolic dysfunction

Emphysema
- Almost exclusively associated with smoking
 - Exception: pre-term infants
- Smoking inhibits production of alpha-antitrypsin which normally stabilizes lysosomes of alveolar macrophages
- Without it, lysosomes rupture and release destructive enzymes
Asthma

- "To pant"
- Active airway inflammation
 - Immune response caused by production of IgE and recruitment of inflammatory cells
- Smooth muscle spasms of bronchioles → reduced air flow
- Often associated with bronchiolar edema
 - Increased wall thickness = impaired diffusion

Asthma

- Affects 1/10 in USA
- More common in children
- Triggers
 - Allergens
 - Stressful state
 - Exercise
 - Viral infection

Asthma

- Treatment
 - Short term relief: inhibit bronchiolar smooth muscle
 - Epinephrine not usually first line
 - Inhaled beta-2 agonists
 - i.e. albuterol
 - Inhaled corticosteroids
 - Long term control
 - Removal of allergen or trigger

Pneumonia

- Infection &/or inflammation within the lung
 - Pathogens
 - Bacterial, viral, or fungal
 - Aspiration
 - Chemicals
 - Ingested material

- Edema/inflammation → increase wall thickness → impaired diffusion

Pneumonia

- Usually treated with antibiotics
- Eighth most common cause of death in U.S.
Tuberculosis (TB)

- Caused by the bacterium *Mycobacterium tuberculosis*
 - Related to the organism that causes leprosy
- Airborne
 - Affects lungs but may become systemic
 - May remain dormant in lungs
- Phagocytosis by macrophage \rightarrow *M. tuberculosis*
 - Resists destruction \rightarrow survives in macrophage
 - Phagolysosome \rightarrow carried throughout body \rightarrow infects other organs \rightarrow reactivates during periods of immune suppression

Symptoms
- Fever, night sweats, weight loss, racking cough, spitting up blood

Treatment
- 12-month course of antibiotics
 - Extensively drug resistant

Lung Cancer

- Leading cause of cancer death

Most common types
- Adenocarcinoma
 - From glandular structures in epithelial tissue
- Squamous cell carcinoma
 - From squamous epithelial cells
 - Slow-growing
- Small cell carcinoma
 - Immature, undifferentiated cells of neuroendocrine nature
 - Fast-growing

Highly metastatic
- Early detection is crucial

Most common sites of metastasis
- Other lung
- Adrenals
- Bone
- Brain
- Liver

Lung Cancer

- Mesothelioma
 - Cancer of the plurae of the lung
 - Almost exclusively caused by exposure to asbestos
 - Naturally-occurring, highly durable fiber
 - Once used for many purposes - fire-proof vests, building insulation, fabric, added to concrete
 - Asbestos fibers are inhaled and become embedded in the lungs
Cystic Fibrosis

- **Secretion of abnormally viscous mucus**
- **Respiratory**
 - Clogged airways, infections
- **Digestive**
 - Clogged ducts, decreased enzyme function
- **Excretory**
 - Electrolyte imbalances

Smoking

- **Effects**
 - Nicotine constricts terminal bronchioles
 - Systemic vasoconstriction
 - Increased mucus secretion by goblet cells
 - Impairment of cilia
 - Inhibits alpha-antitrypsin production
 - Carbon monoxide binds Hb
 - Decrease in collagen production

Acid-Base Disturbances

- **Causes**
 - Abnormal control of breathing
 - Accumulation of acidic or basic chemicals in body
- **Respiratory vs. metabolic**
- **Arterial blood gases**

Respiratory

- **Acidosis**
 - Hypoventilation → low pH, elevated CO₂
 - **Causes**
 - CNS depression (head injury, drugs)
 - Impaired respiratory muscle function (spinal cord injury, neuromuscular disease, muscle relaxants)
 - Pulmonary diseases

Cystic Fibrosis

- Most common lethal genetic disease in North America
- Lung disease accounts for most deaths
- Some now living into their 40’s

Smoking

- Lung cancer leading cause of cancer death in U.S. for men and women
 - Most die within one year after diagnosis
- **COPD**
Respiratory

- Alkalosis
 - Hyperventilation → high pH, low CO₂
 - Causes
 - Psychological (fear, pain, anxiety)
 - Respiratory stimulants
 - Increased metabolic states (fever, pregnancy, sepsis)

Metabolic

- Acidosis
 - Excessive H⁺
 - Organic acid production, loss of base, reduced excretion
 → low pH, low HCO₃⁻
 - Causes
 - Renal failure
 - DKA
 - Starvation
 - Ingestion of salicylates

- Alkalosis
 - Deficient H⁺
 - Loss of acid, low K⁺, Cl⁻, consumption of alkaline substances → high pH, high HCO₃⁻
 - Causes
 - Excessive use of antacids or bicarbonates
 - Protracted vomiting
 - Gastric suction
 - Use of diuretics
 - Excess aldosterone

Compensation

- Respiratory acidosis
 - Kidneys retain base
- Respiratory alkalosis
 - Kidneys excrete base
- Metabolic acidosis
 - Hyperventilation will lower paCO₂
- Metabolic alkalosis
 - Hypoventilation will raise paCO₂