Cardiovascular System

Blood

Introduction

• Circulatory system – 2 divisions
 — Blood vascular system
 • Blood
 • Heart
 • Blood vessels
 — Lymphatic system
 • Lymph
 • Lymph vessels
 • Lymph nodes

Blood

• Components
 — Cellular portion = formed elements
 — Fluid portion = plasma

• Arterial = blood leaving the heart
 — Highly oxygenated
 • Exception: pulmonary artery

• Venous = blood returning to the heart
 — Depleted of oxygen
 • Exception: pulmonary vein

Blood

• ~8% of body weight
• Average volume
 — Males: 5–6 L
 — Females: 4–5 L
 — ~10% taken in a blood donation
• ~92% water

Blood

• More viscous than water
• Color depends on oxygenation
 — More oxygen = bright red
 — Less oxygen = dark red
• pH
 — 7.35–7.45
 — Maintained through several buffer systems
• Temperature
 — 38°C (99° F)
Functions of Blood

1. Transport
 - Oxygen and carbon dioxide
 - Nutrients
 - Metabolic wastes
 - Hormones and enzymes

2. Regulation
 - Body temperature
 - pH
 - Water content of cells through distribution of dissolved ions

3. Protection against
 - Fluid loss
 - Plasma proteins and platelets initiate clot formation
 - Infection (immune response)
 - Antibodies
 - WBCs

Structure of Blood

- Formed elements 45%
- Plasma 55%

Plasma

- Water 90%
 - Solvent
- Proteins 7-9%
 - Albumin
 - Made in the liver
 - Viscosity
 - Osmolarity – keeps fluid from leaking out of your blood vessels
 - Globulins
 - Transport of fat-soluble compounds
 - Immunity (immunoglobulins)
 - Fibrinogen
 - Clotting
Plasma

- Electrolytes
 - Na⁺, K⁺, Ca²⁺, Cl⁻, HCO₃⁻
- Nutrients
 - Glucose, carbohydrates, amino acids, lipids
- Gases
 - O₂ and CO₂
- Wastes
 - Lactic acid from muscles
 - Urea, ketones, uric acid from liver

Formed Elements

- Erythrocytes
 - No nuclei or organelles
- Leukocytes
 - 5 types
 - Granular
 - Agranular
- Thrombocytes (platelets)
 - Cell fragments

Formed Elements

- General
 - Most survive in the bloodstream for only a few days
 - RBC’s = 120 days
 - Most blood cells originate in bone marrow, are amitotic

Erythrocytes

- Appearance
 - Biconcave discs
 - Non-nucleated
 - 8 nm in diameter
Erythrocytes

- Properties
 - Filled with hemoglobin (Hb) for gas transport
 - Major factor contributing to blood viscosity
 - Survive 120 days
- Hematocrit (ratio rbc volume:total blood volume)
 - Males 47%
 - Females 42%

Erythrocytes

- **Gas transport**
 - Biconcave shape
 - Larger surface area
 - Essentially bags of hemoglobin
 - 33% of weight
 - No mitochondria
 - ATP production is anaerobic (no O$_2$ is used in generation of ATP)

Erythrocytes

- **Hemoglobin structure**
 - Globin: protein
 - Heme: iron
- Each Hb molecule can transport 4 O$_2$
- Each RBC has about 250 million Hb molecules!

Erythrocytes

- **Hemoglobin roles**
 - O$_2$ loading in the lungs
 - O$_2$ unloading in the tissues
 - CO$_2$ loading in the tissues
CO Poisoning

- Hemoglobin binds to CO 200X more strongly than O₂
- Reduces oxygen carrying capacity of blood
- Leads to slow suffocation
- Sources of CO = wherever carbon-containing fuels burn
 - Exhaust fumes
 - Cigarette smoke
 - Furnaces, fireplaces
 - Water heaters
 - Clothes dryers
 - Power tools
 - Lawn equipment

Hematopoiesis

- Blood cell formation = hematopoiesis
- Red blood cell formation = erythropoiesis
- Embryo = yolk sac
- Fetus = liver
- After birth = red bone marrow

Erythropoiesis

- Spongy bone
 - Sternum, ribs, cranium
- Epiphyses
 - Femur and humerus
- Vertebral bodies

Hematopoiesis

Erythropoiesis

Hematopoiesis

Erythropoiesis

Erythropoiesis

Figure 17.5

Stem cell

Committed cell

Developmental pathway

Phase 1: Ribosome synthesis

Phase 2: Hemoglobin accumulation

Phase 3: Ejection of nucleus

Nucleus being expelled from a forming red blood cell
Erythropoiesis

- Regulation
 - Too few RBCs leads to tissue hypoxia
 - Too many RBCs increases blood viscosity
 - Balance between RBC production and destruction depends on
 - Hormonal controls (renal erythropoietic factor)
 - Adequate supplies of iron, amino acids and B vitamins

- Hormonal control
 - Hypoxemia
 - Kidneys release REF
 - Plasma protein converted to erythropoietin (EPO)
 - RBC production stimulated in bone marrow

Erythropoiesis

- EPO is used to treat anemia due to kidney failure or cancer treatment
 - More rapid maturation of committed bone marrow cells
 - Increased circulating reticulocyte count in 1–2 days

Erythrocytes

- Fate
 - Life span
 - Old RBCs become fragile and Hb begins to degenerate
 - Macrophages engulf dying RBCs in the spleen
Leukocytes

- Make up <1% of total blood volume
- Defense

Diapedesis

- Leukocytes can move against the direction of bloodflow
- Exit the circulatory system and migrate to sites of injury or infection

Leukocytes

- Granulocytes
 - Neutrophils, eosinophils and basophils
 - Cytoplasmic granules
 - Larger and shorter-lived than RBCs
 - Lobed nuclei
 - All are capable of diapedesis
 - All phagocytic to some degree
Neutrophils
- AKA: Polymorphonuclear leukocytes (PMNs)
- Most numerous WBC
- Granules contain hydrolytic enzymes
 - Bacteria slayers
 - Numbers increase during acute infection

Eosinophils
- Granules
 - Antihistamines
 - Lysozyme like substances
 - Cytokines
- Defend against parasites, certain viruses
- Allergic response
 - Accumulate in nasal mucosa in allergic rhinitis

Basophils
- Rare WBC
- Large, purplish-black granules
 - Histamine
 - Inflammatory chemical vasodilation
 - Increases capillary permeability
 - Attracts other WBC’s to inflamed sites
 - Heparin
 - Prevents clotting

Mast Cells
- Another rare WBC
- May have lobed or large round nucleus
- Abundant large, purplish-black granules
 - Histamine
- Largely known for role in anaphylaxis
- Also important in wound healing, angiogenesis, blood-brain barrier function
Mast Cells
- Anaphylaxis involves massive degranulation of mast cells
- Chemicals from basophils then amplify the inflammation

Mast Cells vs Basophils

Leukocytes
- Agranulocytes
 - Lymphocytes and monocytes
 - Lack visible cytoplasmic granules
 - Lymphocytes = spherical nucleus
 - Monocytes = U-shaped or kidney-shaped nucleus

Figure 17.10d, e
(d) Small lymphocyte; large spherical nucleus
(e) Monocyte; kidney-shaped nucleus

Lymphocytes
- Nuclei
 - Large, dark purple
- Lymphoid tissue
 - Few circulate in the blood
- Crucial to immunity
 - Antibodies
- 2nd most common WBC

Lymphocytes
- Three types
 - T cells
 - Act against virus-infected cells and tumor cells
 - B cells
 - Give rise to plasma cells
 - Natural killer (NK) cells
 - Innate immune response, viral infection
Monocytes

- Largest leukocyte
- Phagocytic
- Nuclei
 - Dark purple-staining, U- or kidney shaped

Monocytes

Leave circulation → enter tissues → macrophages

- Actively phagocytic cells
 - Viruses
 - Intracellular bacterial parasites
 - Chronic infections

Arrive later than neutrophils but arrive in larger numbers and destroy more microbes

Platelets (Thrombocytes)

- Small fragments of cells
- Platelet plug (clot)
 - Helps seal breaks in blood vessels

Stem cell Developmental pathway

- Megakaryocytes are huge!
Complete Blood Count (CBC)

- Screens for anemia and various infections
- Includes
 - RBC count
 - WBC count with differential
 - Platelets
 - Hematocrit (% of RBC)
 - Hemoglobin

CBC

- Normal WBC – 4,000 – 11,000 cells/mm³
 - Leukocytosis = increase in WBC
 - Indicates infection
 - Leukopenia = decrease in WBC
 - Viral infections, chemotherapy, some cancers, some mineral deficiencies
 - Leaves a person vulnerable to infection

Differential – indicates relative numbers of WBC

- Useful for diagnosing disease
- Normal:
 - Neutrophils: 40-70%
 - Eosinophils: 1-4%
 - Basophils: 0.5-1%
 - Lymphocytes: 20-45%
 - Monocytes: 4-8%

Erythrocyte Tests

- Men 5.1-5.8 million cells/mm³
- Women 4.3-5.2 million cells/mm³
- Variations
 - Anemia
 - Polycythemia

Erythrocyte Disorders

- Anemia
 - Blood has abnormally low O₂ carrying capacity
 - Leads to fatigue, paleness, shortness of breath, chills

Causes of Anemia

1) Insufficient erythrocytes
2) Low hemoglobin content
3) Abnormal hemoglobin
Causes of Anemia

1. Insufficient erythrocytes
 - Hemorrhagic anemia: acute or chronic loss of blood
 - Hemolytic anemia: RBCs rupture prematurely
 - Aplastic anemia: destruction or inhibition of red bone marrow (usually due to radiation or chemotherapy exposure)

Causes of Anemia

2. Low hemoglobin content
 - Iron-deficiency anemia
 • Secondary result of hemorrhagic anemia or
 • Inadequate intake of iron-containing foods or
 • Impaired iron absorption
 • Can lead to microcytes (small RBC)

Causes of Anemia

3. Abnormal hemoglobin
 - Pernicious anemia
 • Deficiency of vitamin B₁₂
 - Necessary for formation of normal RBC's
 • Macrocytes
 • Lack of intrinsic factor in stomach?
 - Made by parietal cells in stomach, necessary for B₁₂ absorption

Causes of Anemia

3. Abnormal hemoglobin
 - Thalassemias
 • Absent or faulty globin chain
 • RBCs are thin, delicate, and deficient in hemoglobin

Causes of Anemia

3. Abnormal hemoglobin
 - Sickle-cell anemia
 • Defective gene codes for abnormal hemoglobin (HbS)
 • Causes RBCs to become sickle shaped in low-oxygen situations

Figure 17.8

(a) Normal erythrocyte has normal hemoglobin amino acid sequence in the beta chain.

(b) Sickled erythrocyte results from a single amino acid change in the beta chain of hemoglobin.
Erythrocyte Disorders

• **Polycythemia**
 - Increased RBCs → increased blood viscosity
 - Causes
 • Polycythemia vera
 • Secondary polycythemia
 – Less O₂ is available (high altitude)
 – EPO production increases
 – Blood doping

Leukocyte Disorders

• **Leukopenia**
 - Chemotherapy

• **Leukocytosis**
 - Infection
 - Leukemia

Leukemia

• Bone marrow occupied with cancerous leukocytes
 - Immature non-functional WBC's in the bloodstream

• Death from internal hemorrhage and infections

• Treatments
 - Irradiation
 - Antileukemic drugs
 - Stem cell transplants
Leukemia

- Leukemia
 - Acute leukemia
 - Blast-type cells and primarily affects children
 - Chronic leukemia
 - Older people

Infectious Mononucleosis

- Epstein-Barr Virus
 - Increased agranulocytes
- Typically infects young adults
 - Healthy individuals recover in 2-3 weeks

Blood Types

- Cell surface antigens
 - Proteins
- Antigen-antibody interactions

Human Blood Groups

- At least 30 types of RBC glycoprotein antigens exist
 - Perceived as foreign if transfused blood is mismatched
 - Unique to each individual
 - Promoters of agglutination
- Presence or absence of each antigen is used to classify blood cells into different groups

Blood Groups

- ABO and Rh blood groups
 - Vigorous transfusion reactions
- Other blood groups
 - MNS, Duffy, Kell and Lewis
 - Usually weak antibody-antigen interactions

ABO Blood Groups

- Types A, B, AB, and O
 - Based on the presence or absence of A and B antigens on the surface of the RBC's
 - Blood may contain anti-A or anti-B antibodies (naturally, without prior exposure)

Antibodies to all other antigens are only produced after exposure to the antigen
Transfusion Reactions

- Occur if mismatched blood is transfused
- Donor’s cells
 - Attacked by the recipient’s plasma antibodies
 - Rupture and release free hemoglobin into the bloodstream
- Result
 - Diminished oxygen-carrying capacity
 - Hemoglobin in kidney tubules — renal failure

Terminology

- Used to distinguish from adaptive immune antibodies
- Agglutinogen = antigen
- Agglutinins = antibody

ABO Blood Typing

<table>
<thead>
<tr>
<th>Blood Type Being Tested</th>
<th>RBC Agglutinogens</th>
<th>Serum Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>A and B</td>
<td>+ +</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>– +</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>+ –</td>
</tr>
<tr>
<td>O</td>
<td>None</td>
<td>– –</td>
</tr>
</tbody>
</table>

Blood being tested

- Type AB (contains agglutinogens A and B; agglutinates with both sera)
- Type A (contains agglutinogen A; agglutinates with anti-A)
- Type B (contains agglutinogen B; agglutinates with anti-B)
- Type O (contains no agglutinogens; does not agglutinate with either serum)

Red Blood Cell Compatibility Table

<table>
<thead>
<tr>
<th>Recipient</th>
<th>Donor</th>
</tr>
</thead>
</table>
| O− | O+ | Y
| O− | A− | Y
| O− | A+ | Y
| O− | B− | Y
| O− | B+ | Y
| O− | AB− | Y
| O− | AB+ | Y
| O+ | A− | Y
| O+ | A+ | Y
| O+ | B− | Y
| O+ | B+ | Y
| O+ | AB− | Y
| O+ | AB+ | Y
| A− | A− | Y
| A− | A+ | Y
| A− | B− | Y
| A− | B+ | Y
| A− | AB− | Y
| A− | AB+ | Y
| A+ | A− | Y
| A+ | A+ | Y
| A+ | B− | Y
| A+ | B+ | Y
| A+ | AB− | Y
| A+ | AB+ | Y
| B− | A− | Y
| B− | A+ | Y
| B− | B− | Y
| B− | B+ | Y
| B− | AB− | Y
| B− | AB+ | Y
| B+ | A− | Y
| B+ | A+ | Y
| B+ | B− | Y
| B+ | B+ | Y
| B+ | AB− | Y
| B+ | AB+ | Y
| AB− | A− | Y
| AB− | A+ | Y
| AB− | B− | Y
| AB− | B+ | Y
| AB− | AB− | Y
| AB− | AB+ | Y
| AB+ | A− | Y
| AB+ | A+ | Y
| AB+ | B− | Y
| AB+ | B+ | Y
| AB+ | AB− | Y
| AB+ | AB+ | Y

Y = no adverse reaction
Rh Factor

- 45 different Rh agglutinogens (Rh factors)
 - C, D and E are most common
 - Rh\(^+\) indicates presence of D

- Anti-Rh antibodies are not spontaneously formed in Rh\(^-\) individuals
 - Antibodies form if an Rh\(^-\) individual receives Rh\(^+\) blood
 - Second exposure to Rh\(^+\) blood \(\rightarrow\) transfusion reaction

Erythroblastosis fetalis

- Rh\(^-\) mother carries Rh\(^+\) fetus
 - Synthesize anti-Rh antibodies
 - Second pregnancy anti-Rh antibodies cross the placenta and destroy the RBCs of an Rh\(^+\) fetus

- RhoGAM serum
 - anti-Rh can prevent the Rh\(^-\) mother from making antibodies
 - Complexes with fetal RBCs in maternal blood supply before maternal antibody production can be activated
 - The baby can be treated with prebirth transfusions and exchange transfusions after birth

Hemolytic Disease

- Rh blood group
 - People whose RBCs have the Rh antigen are Rh\(^+\)
 - People who lack the Rh antigen are Rh\(^-\)
 - Normally blood plasma does not contain anti-RH antibodies
 - Hemolytic disease of the newborn (HDN) - blood from Rh\(^+\) fetus passes to Rh\(^-\) mother through placenta or during birth = anti-Rh antibodies made
 - Affect is on second Rh\(^+\) baby

Blood Clotting

- Largely dependent on platelets

Figure 17.12

Stem cell Developmental pathway

- Hemocytoblast
 - Megakaryoblast
 - Promegakaryocyte
 - Megakaryocyte
 - Platelets
Hemostasis

Fast series of reactions for stoppage of bleeding
1. Vascular spasm
 - Vasoconstriction triggered by prostaglandins
2. Platelet plug formation
3. Coagulation (blood clotting)

Vascular Spasm

- Vasoconstriction of damaged blood vessel
 - Triggered by
 - Direct injury
 - Chemicals released by endothelial cells and platelets

Platelet Plug

- Platelets attracted to injured vessel wall
 - Collagen and glycoprotein
 - Actin and myosin

Coagulation

- Blood is transformed from a liquid to a gel
- Reinforces platelet plug

Coagulation

<table>
<thead>
<tr>
<th>Damaged cells, platelets</th>
<th>release</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thromboplastin (enzyme)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prothrombin (inactive proenzyme)</th>
<th>Thrombin (active enzyme)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrinogen (soluble, globular)</td>
<td>Fibrin (insoluble, stringy)</td>
</tr>
</tbody>
</table>
Clinical Considerations

- **Bleeding disorders**
 - Prevent normal clot formation

- **Thromboembolic disorders**
 - Undesirable clot formation

Bleeding Disorders

- **Hemophilia**
 - Several similar hereditary bleeding disorders
 - Symptoms
 - Prolonged bleeding
 - Treated
 - Plasma transfusions
 - Injection of missing factors

Bleeding Disorders

- **Thrombocytopenia**
 - Deficiency of circulating platelets
 - Causes
 - Dehydration, vitamin B12 deficiency, bone marrow disease, leukemia, liver failure, sepsis, Dengue fever, immune diseases, some medications, Lyme disease, snake bites
 - Symptoms
 - Spontaneous bleeding, petechiae
 - Treatment
 - Transfusion of concentrated platelets

Thromboembolic Conditions

- **Thrombus**: clot that develops and persists in an unbroken blood vessel
 - May block circulation, leading to tissue death

- **Embolus**: a thrombus freely floating in the blood stream
 - Pulmonary emboli
 - Cerebral emboli

Thromboembolic Conditions

- **Atherosclerosis**, inflammation, sedentary states

- **Prevention**
 - Aspirin
 - Heparin
 - Warfarin (Coumadin)
 - Important medication
 - Also the active ingredient in some rat poisons