Objectives

To introduce the autonomic nervous system.
To address the neuronal pathways that influence the ANS.
To compare and contrast the:
Parasympathetic nervous system
with
Sympathetic nervous system

Autonomic Nervous System

PNS component that is involuntary.
Motor neurons innervate the visceral functions.
Examples of systems regulated:
- Heart rate
- Motility of GI tract
- Secretion of glands of endocrine system

The Autonomic Nervous System (ANS)

Anatomical features of ANS

I. Sensory neurons originate at site of visceral interceotors:
 - temp, blood gases, body fluids → osmolarity
 - Cell body is in posterior/dorsal root ganglion
 - Synapses with interneurons in (posterior gray horn).

II. Motor/efferent pathway (2 neurons)
 1. Preganglionic (CB in CNS) –Light myelin
 2. Postganglionic (CB outside CNS) – w/o M
 postganglionic axon that extends to the effector organ

Specifics of the Parasympathetic

Preganglionic originate in:
> brain stem – Cranial nerves III, VII, IX & X (vagus)*
> spinal cord S2–S4 segments
Collectively referred to as craniosacral
> Leave via anterior root of the spinal nerve.
> Long preganglionic & short postganglionic

* 90% of all preganglionic parasymp fibers in the body exist in association with the vagus nerve.
Role of the Parasympathetic

- Promotes maintenance activities and conserves body energy
- Its activity is illustrated in a person who relaxes, reading, after a meal
 - Blood pressure, heart rate, and respiratory rates are low
 - Gastrointestinal tract activity is high
 - Pupils are constricted and lenses are accommodated for close vision

Specifics of the Sympathetic

- Highly interconnected system - body wide response system aka "Fight or Flight"
- Preganglionic originate in:
 - Spinal cord: T1-L2
 - Collectively referred to as thoracolumbar
 - Short preganglionic & long postganglionic
 - Neurons leave the spinal cord via Anterior rami
 - Rami communicans
 - Sympathetic trunk ganglion

Effects of the Sympathetic

- Metabolic:
 - Increases the met rate of body activity
 - Raises blood glucose levels
 - Mobilizes fats for use as fuels
 - Increases mental alertness
 - Also stimulates the kidneys to release renin to increase B.P.

Activating the Sympathetic N.S.

Autonomic Nervous System Divisions

- **Sympathetic**
 - Increases heart rate
 - Vasodilation
 - Dilates pupils
 - Liver releases glucose
 - Alertness higher
 - Increased breath rate
 - Decreased urine output
 - Pupil erection

- **Parasympathetic**
 - Decreased heart rate
 - Vasoconstriction
 - Normal iris constriction
 - No effect on liver
 - Increased peristalsis
 - Regular breathing rate
 - Sphincters relaxed
 - Penile erection possible
ANS Anatomy

<table>
<thead>
<tr>
<th>Division</th>
<th>Origin of Fibers</th>
<th>Length of Fibers</th>
<th>Location of Ganglia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sympathetic</td>
<td>Thoracolumbar region of the spinal cord</td>
<td>Short preganglionic and long postganglionic</td>
<td>Close to spinal cord</td>
</tr>
<tr>
<td>Parasympathetic</td>
<td>Brain and sacral spinal cord (craniosacral)</td>
<td>Long preganglionic and short postganglionic</td>
<td>In visceral effector organs</td>
</tr>
</tbody>
</table>