pH Review for BI 233

pH
A measure of the negative logarithm of the hydrogen ion concentration. \([H^+]\)
Unit is in moles/liter (understood)

pH of:
< 7 = Acidic i.e. 0 - 6.9 → high \([H^+]\)
> 7 = Basic* i.e. 7.1 – 14 → low \([H^+]\)
7 = Neutral → \([H^+] = [OH^-]\)

*Basic solutions have more \(OH^-\) than \(H^+\) ions.

The difference between Acids & Bases

Acids : release hydrogen ions when dissolved in water. e.g. HCl → H\(^+\) + Cl\(^-\)

Bases* are substances that absorb \(H^+\) ions, thereby reducing the number of hydrogen ions. e.g. NaOH.
Base ≈ Alkalinity

pH Scale

Each unit on the scale represents a tenfold change in pH (because it is a log scale).

pH of 6 is 10 x’s more acidic than pH of 7
PH of 5 is 100 x’s more acidic than pH of 7
PH of 3 = _______ x’s more acidic than 7

Respiratory Equation

\[CO_2 + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^- \]

Carbon Dioxide + Water
↔ Carbonic Acid
↔ Hydrogen ion (acid)
+ Bicarbonate ion (base)
Correlations

Direct between CO$_2$ & H$^+$
 i.e. if [CO$_2$] ↑ then [H$^+$] ↑

Indirect between CO$_2$ & pH
 i.e. if [CO$_2$] ↑ then pH ↓
 if [CO$_2$] ↓ then pH ↑

Acidemia – ↑ pCO$_2$ but ↓ HCO$_3^-$
 too much acid in the blood

Alkalemia - ↓ pCO$_2$ then ↑ HCO$_3^-$
 too much base in the blood