Identify the model being used…

1. Set
2. Take-away
3. Comparison Approach
4. Measurement
5. Missing addend
6. No clue
Identify the conceptual approach …

1. Set
2. Take-away
3. Comparison Approach
4. Measurement
5. Missing addend
6. No clue
Identify the conceptual approach…

1. Set
2. Take-away
3. Comparison Approach
4. Measurement
5. Missing addend
6. No clue
Identify the model being used…

1. Set
2. Take-away
3. Comparison Approach
4. Measurement
5. Missing addend
6. No clue
Identify the conceptual approach…

1. Set
2. Take-away
3. Comparison
4. Measurement
5. Missing addend
6. No clue
Identify the model being used...

1. Set
2. Take-away
3. Comparison Approach
4. Measurement
5. Missing addend
6. No clue
Identify the conceptual approach…

1. Set
2. Take-away
3. Comparison Approach
4. Measurement
5. Missing addend
6. No clue
Identify the conceptual approach…

1. Set
2. Take-away
3. Comparison Approach
4. Measurement
5. Missing addend
6. No clue
I can illustrate the comparison approach using the set model?

1. Yes
2. No
3. Need to study this
I can illustrate the take-away approach using both the measurement and set model?

1. Yes
2. No
3. Need to study this
I can illustrate the missing-addend approach using both the measurement and set model?

1. Yes
2. No
3. Need to study this
What property?
\[(5 + 6) + 3 = 3 + (5 + 6)\]

1. Associative
2. Commutative
3. Identity
4. Closure
5. No clue
What property?
5 + 6 = 6 + 5

1. Associative
2. Commutative
3. Identity
4. Closure
5. No clue
What property?
5 + ____ = 5

1. Associative
2. Commutative
3. Identity
4. Closure
5. No clue
What property?

\[4 + (6 + 5) = (4 + 6) + 5 \]

1. Associative
2. Commutative
3. Identity
4. Closure
5. No clue
What property?
5 + 6 = is a whole number

1. Associative
2. Commutative
3. Identity
4. Closure
5. No clue
What property?
5 x 6 = 6 x 5

1. Associative
2. Commutative
3. Identity
4. Closure
5. No clue
What method is illustrated?

\[495 + 38 \]
\[(495 + 5) + (38 - 5) \]
\[500 + 33 \]

1. Opposite change rule
2. Partial sums rule
3. Same change rule
4. Add from the base rule
5. No clue
What method is illustrated?

342 - 22
(342+8) - (22+8)
350 - 30

1. Opposite change rule
2. Partial sums rule
3. Same change rule
4. Add from the base rule
5. No clue
Can you write an example showing the partial sums rule?

1. Yes
2. No
3. Never heard of it
Can you write an example showing the partial difference rule?

1. Yes
2. No
3. Never heard of it
Can you write an example showing addition or subtraction using base 10 pieces?

1. Yes
2. No
3. Never heard of it
Can you write an example showing addition or subtraction using a chip abacus model?

1. Yes
2. No
3. Never heard of it
Can you explain and show an example of the subtract from the base method?

1. Yes
2. No
3. Never heard of it
Can you show how to use the lattice method?
246 x 45
1. Yes, I love this method
2. Yes, this is totally cool
3. No
4. Do you get this stuff at Home Depot?
Can you do all these methods in base 6 while balancing a ball on your head?

1. Yes
2. No
3. Not yet, I have had trouble finding a ball?
Do the problems on page 135 #6

• How many did you get right?
Use base 10 pieces to show how to multiply:
14 x 23

1. Yes, I got it right. Amazing
2. I got it right. No problem.
3. I didn’t get it – not now, not then
4. I hope the test is not this week.
Show an intermediate algorithm for multiplication (scaffold) to do:
34 x 23

1. I got it right. No problem.
2. I was close
3. No clue
Use base 10 pieces to show division:
543 / 4

1. Got it.
2. Need to study
3. Don’t remember doing this
4. The test is on Thursday, you are kidding!
Use the scaffold method to show division:

\[648 \div 45 \]

1. Got it.
2. Need to study
3. Don’t remember doing this
Working in other bases will be extra credit!
“I know the test for divisibility by 2.”

1. Yes
2. No
3. Did you go over this?
“I know the test for divisibility by 3.”

1. Yes
2. No
3. Did you go over this?
“I know the test for divisibility by 5.”

1. Yes
2. No
3. Did you go over this?
“I know the test for divisibility by 10.”

1. Yes
2. No
3. Did you go over this?
“I know the test for divisibility by 4.”

1. Yes
2. No
3. Did you go over this?
“I know the test for divisibility by 9.”

1. Yes
2. No
3. Did you go over this?
“I know the test for divisibility by 6.”

1. Yes
2. No
3. Did you go over this?
What is the highest prime number that could possibly be a factor of 223?

1. 13
2. 11
3. 19
4. 5
5. 7
6. 17
I can use a factor tree to find the prime factorization of 3150.

1. Yes
2. No
3. No clue
4. I am already prime.
A number is divisible by 8 if it is divisible by 2 and 4.

1. True always
2. True sometimes
3. Never true
A number is divisible by 6 if it is divisible by 2 and 3.

1. True always
2. True sometimes
3. Never true
The larger a number the more prime factors it has.

1. True
2. False
3. Only if it at least twice as big
A number always has more multiples than factors.

1. True
2. False
3. What?
Use two methods to find GCF(32, 24).

1. I know two methods
2. I can do only one method
3. I can’t think right now how to do it.
4. What does GCF stand for?
Use two methods to find LCM(24, 32).

1. I can do two methods.
2. I could do more than one method if I knew what the other one was! I can’t think right now how to do it.
3. I know two methods but can only do one.
4. I need to study.