What is ESP?

Do you have extrasensory perception, ESP?

Can you determine which card is in your hand without looking at it?

What are we measuring?

What would you expect?

6.3 Hypothesis Testing for Proportions

Binomial Situations

Random Variable:
$$\chi = \#$$
 of successes

Parameter of interest:

Distribution of Point Estimate:

n of Point Estimate:
$$\hat{P} \sim N\left(P, \frac{P(1-p)}{N}\right) \cdots \text{ large enough}$$

Hypothesis Test

Test Requirements:

Ho:
$$P = P_0$$
 $P_0 > 10$

Hi: $P \neq P_0$
 $P_0 > 10$
 $P_0 > 10$
 $P_0 > 10$

Do you have ESP?

Ho:
$$P \le .5$$
 $n \cdot p = 2b \cdot 0.5 = 13 > 10$
Ho: $P > .5$ $n \cdot q = 13 > 10$
 $Z = \frac{7}{2b} - 0.5$ $= -2.353$

Not enough evidence to reject Ho.

There is no evidence at all that the class has ESP, at least in this way.

(p-value: 0.991)

A manufacturer claims that 90% or more readings taken by a machine are accurate. Is there evidence that the manufacturer is wrong?

P-value: 0.9716

Fail to reject Ho.

There is not enough evidence to suggest the manufacturer's claim is incorrect (p-value: 0.9716).

Section 6.4 Hypothesis Testing with Small Samples

Certain requirements must be fulfilled in order to use the hypothesis testing procedures:

Hypothesis Test for a Population Mean

Example: Measurements of groundwater concentrations of silica, in mg/L, were made at a sample of 12 wells in a certain city. The sample mean concentration was 61.3 and the standard deviation was 5.2. Can you conclude that the mean concentration of silica is greater than 60 mg/L?

$$n = 12$$
 $\bar{x} = 61.3$ $S = 5.2$
 $H_0: M \le 60$ $t = \frac{61.3 - 60}{5.2} = 0.866$

p-value: tcdf (0.866, L.N., 11) = 0.202 Fail to reject Ho.

There is not enough evidence to suggest the mean level of silica in the water is more than 60 mg/L (p-value: 0.202)

					\sim					
				/		\				
				/		10				
		_		_	-1-	1000	_			
_	p-value									
y	0.40	0.25	0,10	0.05	α					
	_				0.025	0.01	0.005	0.001	0.0005	
2	0.325	1.000	3.078	6.314	12.706	31.821	63.657	318.309	636.615	
3	0.289	0.816	1.886	2.920	4.303	6.965	9.925	22.327	31.595	
4		0.765	1.638	2.353	3.182	4.541	5.841	10.215	12.924	
5	0.271	0.741	1.533	2.132	2.776	3.747	4.604	7.173	8.610	
	0.267	0.727	1.476	2.015	2.571	3.365	4.032	5.893	6.869	
6	0.265	0.718	1.440	1.943	2,447	3.143	3,707	5.208	5.959	
7	0.263	0.711	1.415	1.895	2,365	2.998	3,499	4,785	5.408	
8	0.262	0.706	1.397	1.860	2.306	2.896	3,355	4,501	5.041	
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	4.297	4,781	
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	4.144	4.587	
11	0.260	0.697	1.363	1.796	2.201	2.718	3.106	4.025	4,437	
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055	3.930	4,318	
13	0.259	0.694	1.350	1.771	2.160	2,650	3.012	3.852	4.221	
14	0.258	0.692	1.345	1.761	2.145	2.624	2,977	3.787	4.140	
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947	3.733	4.073	
16	0.258	0.690	1.337	1.746	2.120	2,583	2.921	3,686	4.015	
17	0.257	0.689	1.333	1.740	2.110	2,567	2.898	3,646	3.965	
18	0.257	0.688	1.330	1.734	2.101	2.552	2.878	3.610	3.922	
19	0.257	0.688	1.328	1.729	2.093	2.539	2.861	3,579	3.883	
20	0.257	0.687	1.325	1.725	2.086	2.528	2.845	3.552	3.850	
21	0.257	0.686	1.323	1.721	2.080	2.518	2.831	3.527	3.819	
22	0.256	0.686	1.321	1.717	2.074	2.508	2.819	3.505	3.792	
23	0.256	0.685	1.319	1.714	2.069	2.500	2.807	3,485	3.768	
24	0.256	0.685	1.318	1.711	2.064	2.492	2.797	3,467	3,745	
25	0.256	0.684	1.316	1.708	2.060	2.485	2.787	3.450	3.725	
26	0.256	0.684	1.315	1.706	2.056	2.479	2.779	3.435	3,707	
27	0.256	0.684	1.314	1.703	2.052	2,473	2,771	3.421	3,690	
28	0.256	0.683	1.313	1.701	2.048	2,467	2.763	3.408	3,674	
29	0.256	0.683	1.311	1.699	2.045	2.462	2.756	3.396	3,659	
30	0.256	0.683	1.310	1.697	2.042	2.457	2.750	3.385	3.646	
35	0.255	0.682	1.306	1.690	2.030	2.438	2.724	3.340	3.591	
40	0.255	0.681	1.303	1.684	2.021	2.423	2.704	3,307	3,551	
60	0.254	0.679	1.296	1.671	2.000	2.390	2.660	3.232	3,460	
20	0.254	0.677	1.289	1.658	1.980	2.358	2.617	3.160	3,373	
∞	0.253	0.674	1.282	1.645	1.960	2.326	2.576	3.090	3,291	

Let's perform the same hypothesis test using a calculator: $\overline{x} = 61.3 \text{ mg/L}$

 H_0 : $\mu \le 60$ $s_x = 5.2 \text{ mg/L}$

 H_1 : $\mu > 60$ n = 12

On the TI-84, go to... On the TI-89, go to...

Stat You will need to access F6-Tests

Tests T-Test

T-Test Data Input Method: Stats

Inpt: Highlight "Stats" Enter µo

Enter: µo sample mean

μο standard deviation sample mean sample size

standard deviation specify alt hypothesis

sample size

specify alt hypothesis For Results, specify calculate

Select Calculate

TI-84 Windows

