Refer to the above schematic to answer the following True / False questions. Assume a voltmeter will always have the negative lead at ground H and the positive lead will probe the circuit at the described letter. Unless specified, there will be no measurable resistance in any of the ground circuits.

1) T F Volts at A will be 12 V
2) T F Volts at B will be less than volts at A
3) T F Volts at C will be less than volts at B
4) T F Volts at D will be less than volts at C
5) T F Volts at E will be less than volts at D
6) T F Volts at F will be less than volts at D
7) T F Volts at G will be less than volts at F
8) T F Volts at G will be less than volts at H
9) T F Amp flow at A will equal amp flow at H
10) T F Amp flow at B will equal amp flow at A
11) T F Amp flow at C will equal amperage flow at B
12) T F Amp flow at E will equal amp flow at F
13) T F Amp flow at F will equal amperage flow at G
14) T F Amp flow at G will equal amp flow at H
15) If the resistance for this entire circuit is equal to 2 ohms, how many amps will flow from the battery?

16) If R1 had a value of 3Ω and there were 2 amps flowing from the battery, how much voltage would drop across this resistor?

17) If the ground at point G was to heat up due to a poor connection or undersized wire, what would happen to the current flow out of the battery?

18) What would happen to the voltage drop across R1 if the ground at G was to heat?
Extra Credit

The voltmeter is connected with the black lead at point \(H \) and the red lead at the letter in question

1) Total Circuit resistance is equal to _________

2) What will the total amperage flow from the battery equal? _______________

3) Voltage at \(A \) __________

4) Voltage at \(B \) __________

5) Voltage at \(C \) _________

6) Voltage at \(D \) __________

7) Voltage at \(E \) __________

8) Voltage at \(F \) __________

9) Voltage at \(G \) __________

10) Voltage at \(H \) __________

11) Amperage flow at \(A \) ______________

12) Amp flow at \(B \) __________

13) Amperage flow at \(C \) ______________

14) Amp flow at \(E \) __________

15) Amperage flow at \(F \) ______________

16) Amp flow at \(G \) __________

17) What is the voltage drop across \(R_1 \)? ______________

18) What is the voltage drop across \(R_2 \)? ______________

19) What is the voltage drop across \(R_5 \)? ______________

20) What is the voltage drop across \(R_6 \)? ______________

21) What would happen to the voltage drop across \(R_1 \) if the ground at \(G \) was to heat up excessively?